Applying Broadcasting/Multicasting/Secured Communication to agentMom in Multi-
Agent Systems

Formal Requirement Specification

Version 1.0

This document is submitted in partid fulfillment of the requirements for the degree MSE.

Chairo] Mekprasertvit
CIS 895 — MSE Project

Kansas State University
Fal | 2003

Forma Requirement Specification

1 Introduction
1.1 Purpose

The purpose of this document isto provide the formal requirement specification of the
project “ Applying Broadcast/M ulticast/Secured communication to agentMom in Multi- Agent
Systems’. This specification uses the UML/OCL methodology as specified in the UML
gpecification verson 1.5. The Object Congraint Language (OCL) isaforma language used to
express congtraint and specify invariant for the system being modd. It provides a precise and
unambiguous specification of the system.

1.2 Scope
In the specification, we specify the pre and post condition of the interest properties to ensure
that these properties are hold in our system mode. These properties are:
1.) Unicast conversation
1.1) Only the specified address receives the unicast message.
1.2) Sent message is the same as received message
2.) Multicast conversation
2.1) Only the specified group receives the multicast message for that group
2.2) Sent message is the same as received message
3.) Broadcast conversation
3.1) Only the conversations holding the same broadcast address receive the broadcast
message.
3.2) Sent message is the same as received message
4.) Secured unicast conversation
4.1) Only the specified address receives the unicast message
4.2) Sent message is the same as recelved message

The properties are based on the driving requirement as sated in the Software Requirement
Specification verson 1.0. Furthermore, we use the UML- based Specification Environment (USE)
tool to check the type and syntax to ensure correctness of the specification. Please refer to
Appendix A for afull specification of the modd.

1.3 References

- Software Requirement Specification, Versgon 1.0, Kansas State Universty, 2003,
(http://Amvww.cis.ksu.edu/~cme6556/software requirements specification 1.0.pdf)
OMG Unified Modding Language Specification, Versgon 1.5,
(http:/Aww.omg.org)
Architecture Design, Version 1.0, Kansas State University, 2003,
(http:// www. ci s. ksu. edu/ ~cme6556/ ar chi t ect ure_desi gn. pdf)
USE manud, University of Bremen
(http:// www. db. i nf or mati k. uni - br enen. de/ pr oj ect / USE)

2 Forma Requirement Specification Descriptions
This section explains the unicast conversation and multicast conversation specification in
detail. Because unicast conversation and secured unicast conversation specifications are amost

identical, only the unicast conversation specification is convered. Also, it isthe same as multicast
conversation and broadcast conversation specifications.

2.1 Unicast conversation

The unicast conversation is named “Conversation”. The attributes of this classare: m,
localhost and connectionHost. The attribute m isaMessage type, and it is used for storing a
message sent to another agent. The attribute Locahost is a String type of Internet address of the
agent. The attribute connectionHost is a String type of Internet address of the connecting agent
(receiver agent). Furthermore, the class and association related to unicast conversation is shown
below:

cl ass Conversation
attributes

m Message;

Local host: String;
connecti onHost: String;
connectionPort: Integer;
oper ati ons

sendMessage(m Message)
recei veMessage(): Message
end

associ ation Agent-Conversation between

Agent[1] rol e agent

Conversation[0..*] role unicastConversation
End

associ ation Construct Uni cast between
Conversation[0..1] role createdByUni cast;
Message[0..1] role createdMessage;

end

associ ati on Recei veUni cast between
Conversation[0..1] role receivedByUni cast;
Message[0..1] role receivedMessage;

end

Findly, the pre and post condition related to this class is described below:

2.1.1 Only the specified address receives the unicast message.

cont ext Conversation::sendMessage(m Message)
-- unicast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Only the destined address and port receive the nessage.
post cond_3: Conversation.alllnstances->
exi sts(c: Conversation]|
((c. Local host = sel f.connecti onHost
and
c.agent.port = self.connectionPort)

implies

c.recei vedMessage = m

and

(c.receivedvVessage = m

i nplies

(c. Local host = sel f.connectionHost
and

c.agent.port = self.connectionPort)))

This part of specification defines pre and post condition of the operation sendM essage of
the class Conversation. There are two pre-conditions and one post-condition. The pre-condition
“cond 1" dates that the Message object m must be created. The pre-condition “cond 2" dtatesthat
the attributes of Message object m must be defined. Findly, the post-condition “cond 3" states that
there exist a Conversation object that receives the Message object m, and the Internet address and
port number of the receiver must be the same as the address that sender connects to. Therefore,
only the specified address and port number receives the unicast message.

2.1.2) Received message is the same as sent message
- Receive unicast pre-post condition
- Received nmessage is the sane as sent nessage
context Conversation::recei veMessage(): Message
- New received nessage is created

post cond_1: self.receivedMessage. ocl | sNew = true
- New created received nessage is the sanme as sent Message

post cond_2: Conversation.alllnstances->

exi sts(c: Conversation|
((c.connectionHost = self.Local host

and

c.connectionPort = self.agent. port)

i nplies

c.createdMvessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage
i mplies

(c.connectionHost = sel f. Local host

and

c.connectionPort = self.agent.port)))
- Result of receiveMessage()

post cond_3: result = self.recei vedMessage

This part of specification defines pre and post condition of the operation recevieM essage of
the class Conversation. There are three post-conditions. The post-condition “cond_1" states that the
received Message object is created during the operation receiveM essage (M essage isreceived from
another agent). The post-condition “cond 2" states that the new recelved Message object must be
the same as the Message object that is sent by the sender. The post-condition “cond 3" specifies
the return result of this operation. In this casg, it is the received message is returned. Therefore, the
sent message is the same as received message.

2.2 Multicast conversation

The multicast conversation is named “MulticastConversation”. The attributes of this class
are. multicastPort, m, join and multicastAddress. The attribute m is a Message type, and it is used
for soring a message sent to another agent. The attribute multicastAddressis a String type of
multicast address of the group that agent subscribes to. The attribute multicastPort is a Integer type

of the port that multicast listening. Furthermore, the association related to multicast conversation is
shown below:

cl ass Milticast Conversation
attributes

mul ticastPort: Integer;

m Message;

j oi n: Bool ean;

nmul ti cast Address: String;
operations

sendMessage(m Message)
sendJoi n()

sendLeave()

recei veMessage(): Message
end

associ ation Agent-MilticastConversation between

Agent[1] rol e agent

Mul ti cast Conversation[0..*] role multicastConversation
end

associ ation ConstructMul ticast between
Mul ti cast Conversation[0..1] role createdByMilticast;
Message[0..1] role createdMessage;

end

associ ation Recei veMul ti cast between
Mul ti cast Conversation[0..1] role receivedByMil ticast;
Message[0..1] role receivedMessage;

end

2.2.1) Only the specified group receives the multicast message for that group

-- Send multicast pre-post condition

context MilticastConversation::sendMessage(m Message)

-- Multicast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m

-- Message nust be well defined before sending
pre cond_2: misDefined

-- Need to subscribe to the multicast group first
pre cond _3: self.join = true

-- Al conversations that have the same nulticast address and port receives the

-- nmessage, including itself.
post cond_4: Ml ticast Conversation.alllnstances->
forAll(c: MilticastConversation

((c.multicast Address = self.nulticast Address

and

c.nmulticastPort = self.nulticastPort)
inplies

c.recei vedMessage = m

and

(c.receivedMessage = m

i mplies

(c.multicast Address = self.nulticast Address

and
c.multicastPort = self.multicastPort)))

This part of specification defines pre and post condition of the operation sendM essage of
the class MulticastConversation. There are three pre-conditions and one post-condition. The pre-
condition “cond 1" dtatesthat the Message object m must be associated with the sender. The pre-
condition “cond 2" gtates that the attributes of Message object m must be defined. The pre-
condition “cond_3" states that the join attribute of the agent must be true (agent mugt join in the
group firs). Findly, the post-condition “cond 4" states that all MulticastConversation objects that
subscribes to the same multicast address and listening to the same port as the sender recelve the
Message object m. Therefore, al subscribers receive multicast message.

2.2.2) Multicast sent message is the same as received message

-- Receive nulticast pre-post condition
context MulticastConversation::receiveMessage(): Message

pre cond_1: self.join = true
-- New received nessage is created

post cond_2: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent

post cond_3: Milticast Conversation.alllnstances->

exi sts(c: MilticastConversation
((c.multicastAddress = self.nulticast Address

and

c.multicastPort = self.nulticastPort)

i mplies

c.createdMessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage

i mplies

(c.multicast Address = self.nulticast Address
and

c.nmulticastPort = self.nulticastPort)))
-- Result of receiveMessage()
post cond_4: result = self.recei vedMessage

This part of specification defines pre and post condition of the operation receiveM essage of
the class MuticastConversation. There are one pre-condition and three post-conditions. The pre-
condition “cond_1" states that the join attribute must be true. The post-condition “cond_2" dtates
that the recelved Message object is created during the operation receiveM essage (Message is
received from another agent). The post-condition “cond_3” states that the received Message object
must be the same as the sent Message object. That is there exists a sending conversation that
subscribe to same group and listen to the same port as the receiving conversation, then sent
message is the same as received message. The post-condition “cond 4" specifies the return result
of thisoperation. In this casg, it isthe recaeived message is returned. Therefore, the sent messageis
the same as received message.

Appendix A

Agent Mom ocl . use

-- Description: Formal Requirenent Specification based on agentMon s

-- Architecture design using UM/ OCL net hodol ogy.

-- W want to formalize to show that our nodel holds the follow ng properties by
-- defining the pre and post conditions:

-- 1.) Unicast conversation

.1) Only the specified address receives the unicast nessage

.2) Sent nmessage is the sanme as received nmessage

.) Milticast conversation

.1) Only the specified group receives the nulticast nessage for that
.2) Sent nessage is the sane as recei ved nessage

.) Broadcast conversation

1
1
WWNNNREP PP

-- broadcast nessage

-- 3.2) Sent nessage is the sane as received nessage

-- In this nodel we assune that the underlying physical comrunication is
-- reliable.

group

.1) Only the conversations holding the same broadcast address receive the

-- Project: Applying Broadcast/Milticast/Secured Conmuni cation to agentMomin

-- Miltiagent Systens

-- Author: Chairoj Mekprasertvit

-- File: agentMom ocl . use

-- Course: ClIS895 MSE Project 2003

-- Project Advisor: Dr. Scott A DelLoach

-- Departnent of Computing and Information Sciences
-- Kansas State University

-- version 1.1 11-23-2003

nodel agent Mom

cl ass Monmbj ect
attributes
name: String;
port: | nteger;

broadcast _port: |Integer
secure_uni cast _port: Integer;
operations

end

cl ass Agent < Montbj ect
attributes

operations

end

cl ass Conmponent < Monbj ect
attributes

oper ati ons

end

cl ass MessageHandl er
attributes
operations

end

cl ass Message
attributes

content: String;
force: String;

host: String;

i nreplyto: String;

| anguage: String;
ontol ogy: String;
performative: String;
port: |nteger;

receiver: String
replywi th: String;
sender: String;
end

cl ass Conversation
attributes

m Message

Local host: String;
connecti onHost: String;
connectionPort: Integer;
operations

sendMessage(m Message)
recei veMessage(): Message
end

cl ass Milticast Conversation
attributes

mul ti castPort: | nteger

m Message;

j oi n: Bool ean;

mul ti cast Address: String;
operations

sendMessage(m Message)
sendJoi n()

sendLeave()

recei veMessage(): Message
end

cl ass Broadcast Conversation
attributes

broadcast Port: | nteger;

m Message;

broadcast Address: String;
operations

sendMessage(m Message)
recei veMessage(): Message
end

cl ass SecureUni cast Conversation
attributes

Local host: String;
connectionHost: String;
connectionPort: Integer;

m Message;

operations

sendMessage(m Message)

recei veMessage(): Message

end

-- Associ ations

associ ation Agent-Conversation between

Agent[1] rol e agent

Conversation[0..*] role unicastConversation
end

associ ation Agent-MilticastConversation between

Agent[1] rol e agent

Mul ti cast Conversation[0..*] role multicastConversation
end

associ ation Agent - Broadcast Conversati on between

Agent [1] rol e agent

Br oadcast Conversation[0..*] role broadcast Conversation
end

associ ati on Agent - SecureUni castt Conversati on between

Agent[1] rol e agent

Secur eUni cast Conversation[0..*] role secureUni cast Conversati on
end

associ ation Construct Uni cast between
Conversation[0..1] role createdByUni cast;
Message[0..1] role createdMessage;

end

associ ati on Recei veUni cast between
Conversation[0..1] role receivedByUnicast;
Message[0..1] role receivedMVessage;

end

associ ation ConstructMul ticast between
Mul ti cast Conversation[0..1] role createdByMilticast;
Message[0..1] role createdMessage;

end

associ ati on Recei veMul ticast between
Mul ti cast Conversation[0..1] role receivedByMil ticast;
Message[0..1] role receivedMVessage;

end

associ ation Construct SecureUni cast between
Secur eUni cast Conversation[0..1] role createdBySecured
Message[0..1] role createdMessage;

end

associ ati on Recei veSecureUni cast between
Secur eUni cast Conversation[0..1] role recei vedBySecured;
Message[0..1] role receivedMessage;

end

associ ation Construct Broadcast between
Br oadcast Conversation[0..1] rol e createdByBroadcast;
Message[0..1] rol e createdMessage;

end

associ ati on Recei veBroadcast between
Broadcast Conversation[0..1] role recei vedByBroadcast;
Message[0..1] role receivedMessage;

end

-- Constraints
constraints

-- Pre - Post Conditions
-- Send unicast pre-post condition
-- Only Specified agent receives nessage
cont ext Conversation::sendMessage(m Message)
-- uni cast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Only the destined address and port receive the nessage.
post cond_3: Conversation.alllnstances->
exi sts(c: Conversation]|
((c. Local host = sel f.connecti onHost

and

c.agent.port = self.connectionPort)
implies

c.recei vedMessage = m

and

(c.receivedMessage = m

i mplies

(c. Local host = sel f.connecti onHost
and

c.agent.port = self.connectionPort)))

-- Receive unicast pre-post condition
-- Received nessage is the sane as sent nessage
cont ext Conversation::recei veMessage(): Message
-- New received nessage is created

post cond_1: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent Message

post cond_2: Conversation.alllnstances->

exi sts(c: Conversation]|
((c.connecti onHost = self.Local host

and

c.connectionPort = self.agent.port)
implies

c.createdMessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage
i mplies

(c.connectionHost = sel f. Local host

and

c.connectionPort = self.agent.port)))
-- Result of receiveMessage()
post cond_3: result = self.recei vedMessage

-- Send secured unicast pre-post condition

cont ext SecureUni cast Conversation::sendMessage(m Message)
-- secured unicast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Only the address that the nessage is destined to receives the nmessage.

post cond_3: SecureUni cast Conversation.alllnstances->
exi sts(c: SecureUni cast Conversation
((c.Local host = sel f.connecti onHost
and
c.agent.secure_uni cast_port =
sel f.connecti onPort)

i mplies

c.recei vedMessage = m

and

(c.receivedMessage = m

implies

(c. Local host = self.connectionHost
and

c. agent. parent.secure_uni cast_port =
sel f.connectionPort)))

-- Receive secured unicast pre-post condition
cont ext SecureUni cast Conversation::recei veMessage(): Message
-- New received nessage is created
post cond_1: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent Message
post cond_2: SecureUni cast Conversation. alllnstances ->
exi sts(c: SecureUni cast Conversation
((c.connectionHost = self.Local host
and
c.connectionPort =
sel f. agent.secure_uni cast_port)

implies

c.createdMessage = self.recei vedMessage)
and

(c.createdMessage = self.recei vedMessage
i mplies

(c.connectionHost = sel f. Local host

and

c.connectionPort =
sel f. agent. secure_uni cast_port)))
-- Result of receiveMessage()
post cond_3: result = self.recei vedMessage

-- Send nulticast pre-post condition
context MilticastConversation::sendMessage(m Message)
-- Multicast conversation associates with the Message paraneter

pre cond_1: self.createdMessage = m
-- Message nust be well| defined before sending

pre cond_2: misDefined
-- Need to subscribe to the nulticast group first

pre cond_3: self.join = true
-- Al conversations that have the same multicast address and port receives the
-- message, including itself.

post cond_4: Multicast Conversation.alllnstances->

forAll(c: MilticastConversation
((c.multicast Address = sel f.nulticast Address

and
c.multicastPort = self.multicastPort)
implies

c.recei vedMessage = m
and

(c.receivedMessage = m

implies
(c.multicastAddress = self.nulticastAddress
and

c.multicastPort = self.nmulticastPort)))

context MilticastConversation::sendJoin()
-- Not in the group

pre cond_1: self.join = fal se
-- New received nessage is created

post cond_2: self.recei vedMessage. ocl | sNew = true
-- Al conversations that have the same multicast address receives the join
-- groupnessage, including itself.

post cond_3: Multicast Conversation.alllnstances->

forAll(c: MilticastConversation
((c.multicast Address = sel f.nulticast Address

and

c.multicastPort = self.multicastPort)
implies

c.recei vedMessage = self.recei vedMessage)
and

(c.receivedMessage = sel f.recei vedMessage

i mplies

(c.nulticast Address = sel f. nmulticastAddress
and

c.multicastPort = self.multicastPort)))
-- Now join the group
post cond_4: self.join = true

context MilticastConversation::sendLeave()
-- Already in the group

pre cond_1: self.join = true
-- New received nessage is created

post cond_2: self.recei vedMessage. ocl | sNew = true
-- Al conversations that have the same nulticast address receives the | eave
-- groupnessage, including itself.

post cond_3: Milticast Conversation.alllnstances->

forAl'l (c: MilticastConversation
((c.multicastAddress = self.nulticast Address

and

c.multicastPort = self.nulticastPort)

i mplies

c.recei vedMessage = sel f.recei vedMessage)
and

(c.receivedMessage = sel f.recei vedMessage
implies

(c.multicast Address = self.nulticast Address
and

c.multicastPort = self.nulticastPort)))
-- Not in the group
post cond_4: self.join = fal se

-- Receive nulticast pre-post condition

context MilticastConversation::recei veMessage(): Message
pre cond_1: self.join = true

-- New received nessage is created
post cond_2: self.receivedMessage. ocl I sNew = true

-- New created received nessage is the sane as sent
post cond_3: Milticast Conversation.alllnstances->
exi sts(c: Ml ticastConversation
((c.multicast Address = self.nulticast Address

and

c.multicastPort = self.nulticastPort)

i mplies

c.createdMessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage
implies

(c.multicastAddress = self.nulticastAddress
and

c.multicastPort = self.nmulticastPort)))
-- Result of receiveMessage()
post cond_4: result = self.recei vedMessage

-- Broadcast nessage is received by all broadcast conversation that has the sane
-- broadcast address, which is the sanme | ocal network
cont ext Broadcast Conversation::sendMessage(m Message)
-- Broadcast conversation associates with the Message paraneter
pre cond_1: self.createdMessage= m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Al conversations that have the sane broadcast address and port receive the
-- nmessage, including itself.
post cond_3: Broadcast Conversation. alllnstances->
forAl'l (c: Broadcast Conversation
((c. broadcast Address = sel f. broadcast Addr ess
and
c. broadcast Port = sel f. broadcast Port)
i mplies
c.recei vedMessage = m
and
(c.receivedMessage = m
implies
(c. broadcast Address = sel f. broadcast Address
and
c. broadcast Port = sel f. broadcastPort)))

-- Received broadcast nessage is the sane as sent nessage
cont ext Broadcast Conversation::recei veMessage(): Message
-- New received nessage is created

post cond_1: self.recei vedMessage. ocl | sNew = true
-- New received nessage is created

post cond_2: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent
post cond_3: MuilticastConversation.alllnstances->

exi sts(c: Broadcast Conversati on|
((c. broadcast Address = sel f. broadcast Addr ess

and

c. broadcast Port = sel f.broadcast Port)

i mplies

c.creatededMessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage

implies
(c. broadcast Address = sel f. broadcast Addr ess
and
c. broadcast Port = sel f. broadcastPort)))
-- Result of receiveMessage()
post cond_3: result = self.recei vedMessage

