
Applying Broadcasting/Multicasting/Secured Communication to agentMom
in Multi-Agent Systems

Architecture Design

Version 1.1

This document is submitted in partial fulfillment of the requirements for the degree MSE.

Chairoj Mekprasertvit
CIS 895 – MSE Project
Kansas State University

Fall 2003

Architecture Design

1 Introduction
 The purpose of this document is to provide the architecture design including class
diagram, description of class diagram, sequence diagram and description of class diagram
for the project “Applying Broadcasting/Multicasting/Secured Communication to
agentMom in Multi-Agent Systems”. The architecture design of this project is defined by
driving requirement stated in Software Requirements Specification version 1.0. This
document is intended to be viewed only by project advisor and committee members.

2. Class Diagram

2.1 agentMom 1.2

Figure 1 Class Diagram for agentMom1.2
Figure 1 shows the class diagram of agentMom version 1.2. This is the version

that the project is based on. It consists of seven classes with four abstract classes,

MomObject, Agent, Conversation and Component, and three concrete classes, Message,
Sorry and MessageHandler.

2.2 New agentMom

Figure 2 Overall Architecture Design

Figure 2 shows the overall design of new agentMom architecture with inheritance
and association relationship. It consists of 16 classes with nine abstract classes,
MomObject, Agent, Conversation, SecureUnicastConversation, MulticastConversation,
SecureMulticastConversation, BroadcastConversation, AgentConversation and
Component, and seven concrete classes, Message, Sorry, MessageHandler,
MulticastHandler, SecureUnicastHandler, SecureMulticastHandler and
BroadcastHandler.

2.3 Associations

From Figure 2, associations are shown with roles and multiplicities below:

 Agent MessageHandler 0..1 0..1

unicastListener agent

2.4 New Classes
Figure 3, new classes added to agentMom are shown with attributes and method

below:

agent

0..1

Agent

Agent

Agent

Agent MulticastHandler

BroadcastHandler

SecureUnicastHandler

SecureMulticastHandler

0..1

0..1 0..1

0..1 0..1

0..N 0..1

agent broadcastListener

createdByUnicastcreatedMessage

Message

Message

Message

Message

Message

Conversation

MulticastConversation

SecureUnicastConversation

SecureMulticastConversation

BroadcastConversation

createdMessage

createdMessage

createdMessage

createdMessage

createdBySecured

createdByMulticast

createdBySecureMulticast

createdByBroadcast

0..1

0..1

0..1 0..1

0..1 0..1

0..1 0..1

0..N

0..1

multicastListener

secureUnicastListeneragent

agent secureMulticastListener

Figure 3 Nine New Classes in agentMom

Figure 3 shows the details of new nine classes added to agentMom 1.2. There are
five new abstract classes, including AgentConversation, MulticastConversation,
SecureUnicastConversation and BroadcastConversation and
SecureMulticastConversation. Furthermore, there are four new concrete classes,
including MulticastHandler, SecureUnicastHandler, BroadcastHandler,
SecureMulticastHandler.

2.5 Class Diagram Description
MomObject: Abstract class that both Agent and Component inherit from. It has two
required parameters that must be set for each agent to use agentMom package, name of
the agent and port used for unicast conversation.

Agent: This abstract class defines the minimum requirements for an agent to use
agentMom package.

MessageHandler: This concrete class is used for listening for initial message when other
agents want to start a unicast conversation.

MulticastHandler: This concrete class is used for listening for initial message when other
agents want to start a multicast conversation. It also performs joining multicast group to
receive multicast message from the group. Multicast group is defined by Internet address
class D. Furthermore, it performs actual receiving multicast messages, and then adds
messages to the queue that will be fetched by MulticastConversation class.
MulticastConversation then indirectly receives message.

BroadcastHandler: This concrete class is used for listening for initial message when other
agents want to start a broadcast conversation. It also performs actual receiving broadcast
messages, and then adds messages to the queue that will be fetched by
BroadcastConversation class. MulticastConversation then indirectly receives message.

SecureUnicastHandler: This concrete class is used for listening for initial message when
other agents want to start a secured unicast conversation. It uses the Secure Socket Layers
(SSL) for secured communication.

SecureMulticastHandler: This concrete class is used for listening for initial message
when other agents want to start a secured multicast conversation. It can also perform
message encryption and decryption. This class works in the same way as
MulticastHandler. The different is that it decrypts the received message before it adds
message to the queue.

Component: This abstract class is used for internal communication of components within
an agent.

AgentConversation: Abstract class that unicast, multicast, broadcast and secured
conversation inherit from. Basically, all conversation classes are generalization of this
class.

Conversation: This abstract class provides unicast communication among agents. It
carries out the message passing between agents. Unicast conversation is controlled by the
implementation class of this class.

Message: This class defines the field used in the message for agent communication.

MulticastConversation: This abstract class provides multicast communication. It is used
for sending and receiving multicast message. This class indirectly receives message from
the message queue controlled by MulticastHandler. Multicast conversation is controlled
by the implementation class of this class.

BroadcastConversation: This abstract class provides broadcast communication. It is used
for sending and receiving broadcast message. The message sent by this class is
broadcasting to every host under the same local area network as the sender. This class
indirectly receives message from the message queue controlled by BroadcastHandler.
Broadcast conversation is controlled by the implementation class of this class.

Sorry: This class is a concrete class of conversation class. It is a default conversation
class that sends message when an agent receives unknown conversation.

SecureUnicastConversation: This abstract class provides secured unicast communication
among agents. It carries out the message passing between agents using SSL
communication. SecureUnicastConversation is controlled by the implementation class of
this class.

SecureMulticastConversation: This abstract class provides secured multicast
communication. It is used for sending and receiving secured multicast message. This
class indirectly receives message from the message queue controlled by
SecureMulticastHandler. Secured multicast conversation is controlled by the
implementation class of this class. This class works in the same way as
MulticastConversation. The different is that it encrypts the message before sending out.

3. Sequence Diagram
 This section shows the sequence diagrams of the basic scenarios of agent
communication including unicast, multicast and broadcast conversation.

3.1 Unicast conversation
 In Figure 4 shows how agent may exchange message using unicast conversation.
On one side, the agent A2 creates the MessageHandler H1 that creates the ServerSocket
class SS2 and then waits for a connection from other agents. When the agent A1 want to
communicate with A2, A1 starts the unicast conversation with A2 by creating the
Conversation object C1 that controls the unicast conversation between agents.
Conversation class C1 then creates the Socket object for sending and receiving unicast
message. First, Conversation C1 request for a connection with the ServerSocket SS2. The
ServerSocket SS2 simply accepts it and then creates the Socket S2 that is connected to

S1. After both Socket S1 and S2 are connected, the MessageHandler H1 calls the
receiveMessage method in A2 with the created socket. Then, Agent A2 creates the
Conversation C2. At this point, conversation is controlled by two Conversation classes
C1 and C2. Messages are passing back and forth until the conversation is completed as
defined in the each Conversation class. Finally, each conversation closes the socket at
each side.

A1: Agent C1:
Conversation

S1: Socket C2:
Conversation

SS2:
ServerSocket

H1:
MessageHandler

S2: Socket A2: Agent

create()

create()
Making connection with SS2

create()
create()

accept()

Socket S2

create()

receiveMessage(Socket S2)

create(Socket S2)
ObjectOutputStream.write(Message M1)

Message M1 passed by value to S2

ObjectOutputStream.read()

ObjectOutputStream.write(Message M2)

ObjectOutputStream.read()

Message M2 passed by value to S1

Message M2

close() close()

Message M1

Figure 4 Starting Unicast Conversation

3.2 Multicast conversation
 Multicast conversation can be categorized into three scenarios, join group, leave
group and conversation.
 In Figure 5 shows how an agent may join the multicast group. To join the group,
Agent A1 creates the MulticastHandler H1. The MulticastHandler H1 then creates the
MulticastSocket S1 and calls joinGroup method in the MulticastSocket class to notify the
router that this machine want to join the multicast group. The MulticastHandler H1 then
sends a join message to all agents previously existing in the group. In this case, the
MulticastHandler H2 belonging to Agent A2 receives the join message, and then calls in
receiveMulticastJoin method in the Agent A2.

Iteration [while conversation not end]

Conversations exchange message
until the conversation is finished.
Each conversation may perform read
and write in any order, e.g. write,
write, read and write.When
conversation is finished, each side
close socket connection

A1: Agent H1:
MulticastHandler

S1:
MulticastSocket

S2:
MulticastHandler

A2: AgentS2:
MulticastHandler

create() create()

joinGroup

sendJoin(Message join)

Message join passed by value to S2

read()

Message join

receiveMulticastJoin(Message join)

Figure 5 Join Multicast Group

In Figure 6 shows an agent may starts the multicast conversation with the group.

Agent A1 creates the MulticastConversation C1. MulticastConversation C1 then send the
start conversation message to the group. In this case Agent A2’s MulticastHandler
receive a request to start a new conversation. It calls the receiveMulticastConversation
method in Agent A2. Then Agent A2 starts a new MulticastConversation corresponding
to the request. At this point, conversation is controlled by the MulticastConversation class
at each side of Agent. Messages are passing back and forth within the group until the
conversation is completed as defined in the each MulticastConversation class.

V1: VectorA1: Agent H1:
MulticastHandler

C1:
MulticastConversation

S1:
MulticastSocket

S2:
MulticastSocket

C2:
MulticastConversation

V2: Vector A2: AgentH2:
MulticastHandler

create()

send(Message start)
read()

Mesage start
Message start passed by value to S2

receiveMulticastConversation(Message start)

create(Message start)
send(Message M1)

read()

Message M1
add(Message M1)

Message M1 passed by value to S1

remove()

Message M1

send(Message M2)

remove()

Message M2

read()

Message M2 Passed by value to S2 Message M2

Figure 6 Multicast Conversation

In Figure 7 shows how an agent may leave the multicast group. To leave the

group, Agent A1 calls setLeave method in MulticastHandler H1 and passes the value
true. The MulticastHandler H1 then send a leave message to the all agents in the group by
calling the send method in MulticastSocket. In this case, the Agent A2’s
MulticaastHandler receives the leave message and then calls the receiveMulticastLeave
method in the Agent A2. Finally, the MessageHandler H1 calls leaveGroup method in the
MulticastSocket class to notify the router that this machine wants to leave the multicast
group, and then close the multicast socket.

Iteration [while conversation not end]

Conversations exchanges message until the
conversation is finished. Each conversation
may perform read and write in any order, e.g.
write, write, read and write.

S2:
MulticastSocket

A1: Agent H1:
MulticastHandler

S1:
MulticastSocket

H2:
MulticastHandler

A2: Agent

setLeave(true)

leaveGroup()

sendLeave(Message leave)

read()

Message leave
Message leave passed by value to S2

receiveMulticastLeave(Message leave)

close()

Figure 7 Leave Multicast Group

3.3 Broadcast conversation
In Figure 8 shows how an agent may start the broadcast conversation with other

agents on the same local network. Agent A1 creates the BroadcastConversation C1. The
BroadcastConversation C1 then send the start conversation message to all agent under the
same local network. In this case Agent A2’s BroadcastHandler receive a request to start a
new conversation. It calls the receiveBroadcastConversation method in Agent A2. Then
Agent A2 starts a new BroadcastConversation corresponding to the request. At this point,
conversation is controlled by the BroadcastConversation class at each side of Agent.
Messages are passing back and forth within the agents in the same local network until the
conversation is completed as defined in the each BroadcastConversation class.

C2:
BroadcastConversation

A1: Agent H1:
BroadcastHandler

C1:
BroadcastConversation

S1:
DatagramSocket

S2:
DatagramSocket

H2:
BroadcastHandler

A2: AgentV2: Vector

create()

send(Message start)

read(Message start)

send(Message M1)

read(Message M1)

add(Message M1)

receiveBroadcastConversation(Message start)

Message start

create()

Message start passed by value to S2

Message M1

remove()

Message M1

Message M1 passed by value

send(Message M2)

read()

Message M2
Message M2 passed by value

Figure 8 Broadcast Conversation

Iteration [while conversation not end]

Conversations exchanges message until the
conversation is finished. Each conversation
may perform read and write in any order, e.g.
write, write, read and write.

