Applying Broadcasting/Multicasting/Secured Communication to agentMom
in Multi-Agent Systems

Architecture Design

Version 1.1

This document is submitted in partid fulfillment of the requirements for the degree MSE.

Chairoj Mekprasertvit
CIS 895 — MSE Project
Kansas State University
Fall 2003



Architecture Design

1 Introduction

The purpose of this document is to provide the architecture desgn including class
diagram, description of class diagram, sequence diagram and description of classdiagram
for the project “ Applying Broadcasting/M ulti casting/Secured Communication to
agentMom in Multi-Agent Systems’. The architecture design of this project is defined by
driving requirement stated in Software Requirements Specification verson 1.0. This
document isintended to be viewed only by project advisor and committee members.



2. Class Diagram

2.1 agentMom 1.2

Figure 1 Class Diagram for agentM om1.2
Figure 1 showsthe class diagram of agentMom verson 1.2. Thisisthe verson
thet the project is based on. It consists of seven classes with four abstract classes,



MomObject, Agent, Conversation and Component, and three concrete classes, Message,
Sorry and MessageHandler.

2.2 New agentMom

Figure 2 Overall Architecture Design
Figure 2 shows the overdl design of new agentMom architecture with inheritance

and association relationship. It conssts of 16 classes with nine abstract classes,
MomObject, Agent, Conversation, SecureUnicastConversation, MulticastConversation,
SecureM ulticastConversation, BroadcastConversation, AgentConversation and
Component, and seven concrete classes, Message, Sorry, MessageHandler,
MulticastHandler, SecureUnicastHandler, SecureMulticastHandler and
BroadcastHandler.

2.3 Associations
From Figure 2, associations are shown with roles and multiplicities below:

agent unicastListener

Agent o1 o1 MessageHandler




agent multicastListener _

Agent o1 on | MulticastHandler
agent broadcastListener

Agent o1 o1 BroadcastHandler
agent secureUnicastListener

Agent o1 o1 SecureUnicastHandler
agent secureM ulticastListener

Agent o1 on | SecureMulticastHandler
createdM essage createdByUnicast

Message o1 o1 Conversation
createdM essage createdByMuulticast

Message 01 o1 | MulticastConversation
createdM essage createdBySecured

Message 01 o1 | SecureUnicastConversation
createdM essage createdBySecureM ulticast

Message 01 o1 | SecureMulticastConversation
createdM essage createdByBroadcast

Message 01 o1 | BroadcastConversation

2.4 New Classes
Figure 3, new classes added to agentMom are shown with attributes and method

below:




Figure 3 Nine New Classesin agentMom



Figure 3 shows the details of new nine classes added to agentMom 1.2. There are
five new abdtract classes, including AgentConversation, MulticastConversation,
SecureUnicastConversation and BroadcastConversation and
SecureM ulticastConversation. Furthermore, there are four new concrete classes,
including MulticastHandler, SecureUnicastHandler, BroadcastHandler,
SecureMulticastHandler.

2.5 Class Diagram Description

MomObject: Abstract class that both Agent and Component inherit from. It hastwo
required parameters that must be set for each agent to use agentMom package, name of
the agent and port used for unicast conversation.

Agent: This abgtract class defines the minimum requirements for an agent to use
agentMom package.

MessageHandler: This concrete dassis used for ligtening for initid message when other
agents want to start a unicast conversation.

MulticastHandler: This concrete classis used for listening for initia message when other
agents want to start a multicast conversation. It dso performsjoining multicast group to
recelve multicast message from the group. Multicast group is defined by Internet address
class D. Furthermore, it performs actua receiving multicast messages, and then adds
messages to the queue that will be fetched by MulticastConversation class.
MulticastConversation then indirectly receives message.

BroadcastHandler: This concrete dassis used for listening for initid message when other
agents want to start a broadcast conversation. It aso performs actud receiving broadcast
messages, and then adds messages to the queue that will be fetched by
BroadcastConversation class. MulticastConversation then indirectly receives message.

SecureUnicastHandler: This concrete class is used for listening for initid message when
other agents want to start a secured unicast conversation. It uses the Secure Socket Layers
(SSL) for secured communication.

SecureMulticastHandler: This concrete classis used for listening for initid message
when other agents want to start a secured multicast conversation. It can also perform
message encryption and decryption. This class worksin the same way as
MulticastHandler. The different isthat it decrypts the received message before it adds
message to the queue.

Component: This abstract classis used for interna communication of components within
an agent.

AgentConversation: Abstract class that unicast, multicast, broadcast and secured
conversation inherit from. Basicaly, al conversation classes are generdization of this
class.



Conversation: This abstract class provides unicast communication among agents. It
carries out the message passing between agents. Unicast conversation is controlled by the
implementation class of this class.

Message: This class defines the fied used in the message for agent communication.

MulticastConversation: This abstract class provides multicast communication. It isused
for sending and receiving multicast message. This class indirectly receives message from
the message queue controlled by MulticastHandler. Multicast conversation is controlled
by the implementation class of this class.

BroadcastConversation: This abstract class provides broadcast communication. It is used
for sending and receiving broadcast message. The message sent by thisdassis
broadcasting to every host under the same locd area network as the sender. This class
indirectly receives message from the message queue controlled by BroadcastHandler.
Broadcast conversation is controlled by the implementation class of this class.

Sorry: This classisaconcrete class of conversation class. It isadefault conversation
class that sends message when an agent receives unknown conversation.

SecureUnicastConversation: This abstract class provides secured unicast communication
among agents. It carries out the message passing between agents using SSL
communication. SecureUnicastConversation is controlled by the implementation class of
thisclass.

SecureM ulticastConversation This abstract class provides secured multicast
communication. It is used for sending and receiving secured multicast message. This
classindirectly receives message from the message queue controlled by
SecureMulticastHandler. Secured multicast conversation is controlled by the
implementation class of this class. This classworksin the same way as
MulticastConversation. The different isthat it encrypts the message before sending out.

3. Sequence Diagram
This section shows the sequence diagrams of the basic scenarios of agent
communication including unicast, multicast and broadcast conversation.

3.1 Unicast conversation

In Figure 4 shows how agent may exchange message using unicast conversation.
On one side, the agent A2 creates the MessageHandler H1 that creates the ServerSocket
class SS2 and then waits for a connection from other agents. When the agent A1 want to
communicate with A2, Al sarts the unicast conversation with A2 by creeting the
Conversation object C1 that controls the unicast conversation between agents.
Conversation class C1 then creates the Socket object for sending and receiving unicast
message. First, Conversation C1 request for a connection with the ServerSocket SS2. The
ServerSocket SS2 smply accepts it and then creates the Socket S2 that is connected to



S1. After both Socket S1 and S2 are connected, the MessageHandler H1 callsthe
receiveM essage method in A2 with the created socket. Then, Agent A2 creates the
Conversation C2. At this point, conversation is controlled by two Conversation classes
C1 and C2. Messages are passing back and forth until the conversation is completed as
defined in the each Conversation class. Finally, each conversation closes the socket at
each Sde.

Al: Agent cL Si: Socket |l S2: Socket c2: i ss2: H1: A2 Agent |
Conversation | Conversation_|; ServerSocket || MessageHandler|} | |
I create) | I I T creae) |
L -5, | I I _create)  Je: |
| | * accept()
create() | N o :
L5 Maklrlig connection witl SS2
i ) creake()
) Socket S2
recejveM je(Sockey S2)
reate(Socket SP ’

ObjectOutpytStream.write(\ ge M1)

Objg ctbutputStream réad()
M1 passed by valye|to S2
Message M1

ObjectOutpytStream.write(Message M2)

ObjdcfOutputStream.read()

Message M2 passed by valug fo S1
Message M2 |m—t———————— N IS i
- : Iteration [while conversation not end] |

—_————— e e

Conversations exchange message
until the conversation is finished.
Each conversation may perform read
and write in any order, e.g. write,
write, read and write.When
conversation is finished, each side

close socket connection

close()

. close()

—————
——————— ]

—————— e e — o

Figure4 Starting Unicast Conver sation

3.2 Multicast conver sation

Multicast conversation can be categorized into three scenarios, join group, leave
group and conversation.

In Figure 5 shows how an agent may join the multicast group. To join the group,
Agent Al creates the MulticastHandler H1. The MulticastHandler H1 then crestes the
MulticastSocket S1 and cdls joinGroup method in the MulticastSocket classto notify the
router that this machine want to join the multicast group. The MulticastHandler H1 then
sends ajoin message to dl agents previoudy existing in the group. In this case, the
MulticestHandler H2 belonging to Agent A2 receives the join message, and then cdlsin
receiveM ulticastJoin method in the Agent A2.



Al: Agent H1: Si: S2: S2. A2: Agent
MulticastHandler || MulticastSocket || MulticastHandler || MulticastHandler

4 create) | create() |

I

>

- i

joinGroup |L'_| I
|
!

_________ 9'...1

|
|
|
I
spt dJoin(Message:j ih) I

read()

T ! <

(=g
Messade join passed by valu¢ to S2 .

Message join

————

receivgMulticastJoin(Message join)

2T

Ll

Figure 5 Join Multicast Group

In Figure 6 shows an agent may starts the multicast conversation with the group.
Agent A1 creates the MulticastConversation C1. MulticastConversation C1 then send the
gtart conversation message to the group. In this case Agent A2's MulticastHandler
recelve arequest to start a new conversation. It calls the receiveM ulticastConversation
method in Agent A2. Then Agent A2 starts a new MulticastConversation corresponding
to the request. At this point, conversation is controlled by the MulticastConversation class
a each sde of Agent. Messages are passing back and forth within the group until the
conversaion is completed as defined in the each MulticastConversation class.



i AL Agent I Vi:Vector HL cL: ] Si: s2: H c2: H2: |i V2: Vector A2 Agent |
1 [ Multic: MulticaslHand\erI |

MulticastHandler! Mu\licaleonversalion||MullicaslSockel stSocket | MulticastConversation il
L - I L . B - T
] (™}
create()

end(Message start;

Messge start passed by valileho's2

TecejvgMulticastConvessation(M

yol

art)

create(Message start)

send(Message M1),

M1 Message th] passed by value to $1

add(Message MJ)
T~
r rénjove()

M1

send(Message M2)

Messapg M2 Passed by valueltd 52 Messade M2

remove

Message'M2

I, R D, d__

Conversations exchanges message until the
conversation is finished. Each conversation |
may perform read and write in any order, e.g. :
write, write, read and write. |

Figure 6 Multicast Conversation

In Figure 7 shows how an agent may leave the multicast group. To leave the
group, Agent Al cdls setleave method in MulticastHandler H1 and passes the value
true. The MulticastHandler H1 then send aleave message to the al agentsin the group by
cdling the send method in MulticastSocket. In this case, the Agent A2's
MulticaastHandler receives the leave message and then cdls the recelveM ulticastL eave
method in the Agent A2. Findly, the MessageHandler H1 calls leaveGroup method in the
MulticastSocket classto notify the router that this machine wants to leave the multicast
group, and then close the multicast socket.



Al: Agent

H1:
MulticastHandler

S1:
MulticastSocket

| setLeave(true) }

sendLeave(Messagelehve)

leaveGroup()

P |
I

[

S2:

MulticastSocket

read()

H2:
MulticastHandler

r
Messhge leave passed by \la ue to S2

————

Message leave

receiveMulticastLeave(Mess

A2: Agent

age leave)

Figure 7 Leave Multicast Group

3.3 Broadcast conver sation

In Figure 8 shows how an agent may start the broadcast conversation with other
agents on the same local network. Agent A1 creates the BroadcastConversation C1. The
BroadcastConversation C1 then send the start conversation message to al agent under the
same loca network. In this case Agent A2's BroadcastHandler receive arequest to sart a
new conversation. It cals the receiveBroadcastConversation method in Agent A2. Then
Agent A2 starts a new BroadcastConversation corresponding to the request. At this point,
conversation is controlled by the BroadcastConversation class at each side of Agent.
Messages are passing back and forth within the agents in the same locad network until the

conversation is completed as defined in the each BroadcastConversation class.

L




| AL:Agent || HI1: | ClL: I S1: 1 S2: 1 C2: f H2: || V2:Vector || A2 Agent |
L |EroadcaslHandle] EroadcaslconversatiodQatagramSocket_I !BatagramS()cke_l! roadcastConversation| BroadcastHandle} 1 I |
|

reate() |

| read(Meskage start) |

end(Message start)

Message plart passed by value to S2 Message start

recejvgBroadcastConve}sation(Message|start)

create() i
[< |
|

send(Message M1

read(Megsage M1)

lue

Message M1

|
|
M1 passed by ¥
|
|
|

dd(Message M1

>
.I.I
removg() |
|
read() I Messagd M1 |
| I send(Message MZ)I I
T M2 db a | I
q passed by vajue
| Messademp  MessaqqMZpassedbyvepee I _}_ |
[ . . .
T Iteration [while conversation not end)]
|
H -
! ! Conversations exchanges message until the
[

may perform read and write in any order, e.g.
write, write, read and write.

|
|
l

| : conversation is finished. Each conversation
|
|
|

Figure 8 Broadcast Conver sation



