Description: Formal Requirenment Specification based on agent Momi s
Architecture design using UM./ OCL net hodol ogy.

We want to formalize to show that our nodel holds the follow ng properties by
defining the pre and post conditions:

.) Unicast conversation

.1) Only the specified address receives the uni cast nessage

.2) Sent nessage is the sane as recei ved nessage

.) Multicast conversation

.1) Only the specified group receives the nulticast nessage for that group
.2) Sent nmessage is the sane as received nmessage

.) Broadcast conversation

.1) Only the conversations holding the sanme broadcast address receive the
br oadcast nessage

3.2) Sent nmessage is the sane as received nessage

In this nodel we assune that the underlying physical communication is
reliable.

Project: Applying Broadcast/Milticast/Secured Conmuni cation to agentMomin
Mul ti agent Systens

Aut hor: Chairoj Mekprasertvit

File: agent Mom ocl . use

Course: Cl S895 MSE Project 2003

Project Advisor: Dr. Scott A. DelLoach

Department of Conputing and Information Sciences

Kansas State University

version 1.1 11-23-2003

=

WWNNNBRE PP

nodel agent Mom

cl ass Mombj ect
attributes
nanme: String
port: |nteger;

broadcast _port: |nteger
secure_uni cast _port: I|nteger;
operations

end

cl ass Agent < MonmObj ect
attributes
oper ati ons

end

cl ass Conmponent < Montbj ect
attributes
operations

end

cl ass MessageHandl er
attributes
operations

end

cl ass Message
attributes
content: String;
force: String;
host: String;

i nreplyto: String;

| anguage: String;
ontol ogy: String;
performative: String;
port: |nteger;
receiver: String;
replywith: String;
sender: String;

end

cl ass Conversation
attributes

m Message;

Local host: String;
connectionHost: String;
connectionPort: |nteger;
operations

sendMessage(m Message)
recei veMessage(): Message
end

class Miulticast Conversation
attributes

nmul ti castPort: |nteger;

m Message;

j oi n: Bool ean;

nmul ti cast Address: String;
operations

sendMessage(m Message)
sendJoi n()

sendLeave()

recei veMessage(): Message
end

cl ass Broadcast Conversation
attributes

broadcast Port: | nteger

m Message;

br oadcast Address: String;
oper ati ons

sendMessage(m Message)
recei veMessage(): Message
end

cl ass SecureUni cast Conversati on
attributes

Local host: String;
connectionHost: String;
connectionPort: Integer;

m Message;

operations

sendMessage(m Message)

recei veMessage(): Message

end

-- Associ ations

associ ati on Agent - Conversati on between

Agent[1] rol e agent

Conversation[0..*] role unicastConversation
end

associ ation Agent-MilticastConversation between

Agent [1] rol e agent

Mul ti cast Conversation[0..*] role multicastConversation
end

associ ati on Agent - Broadcast Conversati on between

Agent[1] rol e agent

Br oadcast Conversation[0..*] role broadcast Conversation
end

associ ation Agent - SecureUni casttConversati on between

Agent [1] rol e agent

Secur eUni cast Conversation[0..*] role secureUni cast Conversati on
end

associ ation Construct Uni cast between
Conversation[0..1] role createdByUni cast;
Message[0..1] role createdMessage;

end

associ ation Recei veUni cast between
Conversation[0..1] role receivedByUni cast;
Message[0..1] role receivedMVessage;

end

associ ati on ConstructMulticast between
Mul ti cast Conversation[0..1] role createdByMulticast;
Message[0..1] role createdMessage;

end

associ ation Recei veMul ti cast between
Mul ti cast Conversation[0..1] role receivedByMil ticast;
Message[0..1] role receivedMessage;

end

associ ati on Construct SecureUni cast between
Secur eUni cast Conversation[0..1] role createdBySecured;
Message[0..1] role createdMessage;

end

associ ati on Recei veSecur eUni cast between
Secur eUni cast Conversation[0..1] role recei vedBySecured
Message[0..1] rol e recei vedMessage;

end

associ ati on Construct Broadcast between
Broadcast Conversation[0..1] rol e createdByBroadcast;
Message[0..1] role createdMessage;

end

associ ati on Recei veBroadcast between

Broadcast Conversation[0..1] role recei vedByBroadcast;
Message[0..1] role receivedMVessage;
end

-- Constraints
constraints

-- Pre - Post Conditions

-- Send uni cast pre-post condition

-- Only Specified agent receives nessage

context Conversation::sendMessage(m Message)

-- unicast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m

-- Message nust be well defined before sending
pre cond_2: misDefined

-- Only the destined address and port receive the nessage.
post cond_3: Conversation.alllnstances->

exi sts(c: Conversation|
((c.Local host = sel f.connecti onHost

and

c.agent.port = self.connectionPort)
i mplies

c.recei vedMessage = m

and

(c.receivedMessage = m

implies

(c. Local host = sel f.connecti onHost
and

c.agent.port = self.connectionPort)))

-- Receive unicast pre-post condition
-- Received nmessage is the sane as sent nessage
context Conversation::receiveMessage(): Message
-- New received nessage is created

post cond_1: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent Message

post cond_2: Conversation.alllnstances->

exi sts(c: Conversation]|
((c.connectionHost = self.Local host

and

c.connectionPort = self.agent.port)

i mplies

c.createdMessage = self.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage
implies

(c.connectionHost = self.Local host

and

c.connectionPort = self.agent.port)))
-- Result of receiveMessage()
post cond_3: result = self.recei vedMessage
-- Send secured unicast pre-post condition

cont ext SecureUni cast Conversation::sendMessage(m Message)

-- secured unicast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Only the address that the nessage is destined to receives the nessage.
post cond_3: SecurelUni cast Conversation.alllnstances->
exi sts(c: SecureUnicast Conversation
((c. Local host = sel f.connecti onHost
and
c. agent.secure_uni cast_port =
sel f.connecti onPort)

implies

c.recei vedMessage = n

and

(c.receivedMessage = m

i mplies

(c. Local host = sel f.connectionHost
and

c. agent.parent.secure_uni cast_port =
sel f.connectionPort)))

-- Receive secured unicast pre-post condition
cont ext SecureUni cast Conversation::recei veMessage(): Message
-- New received nessage is created
post cond_1: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent Message
post cond_2: SecureUni cast Conversation.alllnstances ->
exi sts(c: SecureUni cast Conversation
((c.connectionHost = self.Local host
and
c.connectionPort =
sel f. agent.secure_uni cast_port)

i mplies

c.createdMessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage
implies

(c.connectionHost = sel f. Local host

and

c.connectionPort =
sel f. agent. secure_uni cast_port)))
-- Result of receiveMessage()
post cond_3: result = self.recei vedMessage

-- Send mnulticast pre-post condition
context MilticastConversation::sendMessage(m Message)
-- Multicast conversation associates with the Message paraneter

pre cond_1: self.createdMessage = m
-- Message nust be well defined before sending

pre cond_2: misDefined
-- Need to subscribe to the nulticast group first

pre cond_3: self.join = true
-- Al conversations that have the same multicast address and port receives the
-- nmessage, including itself.

post cond_4: Milticast Conversation.alllnstances->

forAl'l (c: MulticastConversation
((c.multicastAddress = self.nulticast Address

and

c.multicastPort = self.multicastPort)
implies

c.recei vedMessage = n

and

(c.receivedvessage = m

i mplies

(c.nulticast Address = sel f. multicast Address
and

c.multicastPort = self.multicastPort)))

context Ml ticastConversation::sendJoin()
-- Not in the group

pre cond_1: self.join = fal se
-- New received nessage is created

post cond_2: self.recei vedMessage. ocl | sNew = true
-- Al conversations that have the same nulticast address receives the join
-- groupnessage, including itself.

post cond_3: Milticast Conversation.alllnstances->

forAl'l (c: MulticastConversation
((c.multicastAddress = self.nulticast Address

and

c.multicastPort = self.nulticastPort)

i mplies

c.recei vedMessage = sel f.recei vedMessage)
and

(c.recei vedMessage = sel f.recei vedMessage
implies

(c.multicastAddress = self.nulticast Address
and

c.multicastPort = self.nulticastPort)))
-- Now join the group
post cond_4: self.join = true

context MilticastConversation::sendLeave()
-- Already in the group

pre cond_1: self.join = true
-- New received nessage is created

post cond_2: self.receivedMessage. ocl I sNew = true
-- Al conversations that have the sane multicast address receives the | eave
-- groupnessage, including itself.

post cond_3: Multicast Conversation.alllnstances->

forAll (c: MilticastConversation|
((c.multicast Address = sel f.nulticast Address

and

c.multicastPort = self.multicastPort)
implies

c.recei vedMessage = self.recei vedMessage)
and

(c.receivedMessage = sel f.recei vedMessage

i mplies

(c.nulticast Address = sel f. multicast Address
and

c.multicastPort = self.multicastPort)))
-- Not in the group
post cond_4: self.join = fal se

-- Receive nulticast pre-post condition
context MilticastConversation::recei veMessage(): Message

pre cond_1: self.join = true
-- New received nessage is created

post cond_2: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent

post cond_3: Milticast Conversation.alllnstances->

exi sts(c: MilticastConversation
((c.multicast Address = sel f.nulticast Address

and

c.multicastPort = self.multicastPort)
implies

c.createdMessage = sel f.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage

i mplies

(c.nulticast Address = sel f.nmulticast Address
and

c.multicastPort = self.multicastPort)))
-- Result of receiveMessage()
post cond_4: result = self.recei vedMessage

-- Broadcast nmessage is received by all broadcast conversation that has the sane
-- broadcast address, which is the sanme | ocal network.
cont ext Broadcast Conversation::sendMessage(m Message)
-- Broadcast conversation associates with the Message paraneter
pre cond_1: self.createdMessage= m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Al conversations that have the sanme broadcast address and port receive the
-- message, including itself.
post cond_3: Broadcast Conversation. alllnstances->
forAll (c: Broadcast Conversati on|
((c. broadcast Address = sel f. broadcast Addr ess
and
c. broadcast Port = sel f.broadcast Port)
implies
c.recei vedMessage = m
and
(c.receivedvessage = m
i mplies
(c. broadcast Address = sel f. broadcast Address
and
c. broadcast Port = sel f.broadcastPort)))

-- Received broadcast nessage is the sane as sent nessage
cont ext Broadcast Conversation::recei veMessage(): Message
-- New received nessage is created
post cond_1: self.recei vedMessage. ocl | sNew = true
-- New received nessage is created
post cond_2: self.recei vedMessage. ocl | sNew = true
-- New created received nessage is the sane as sent
post cond_3: Milticast Conversation.alllnstances->
exi sts(c: Broadcast Conversation
((c. broadcast Address = sel f. broadcast Addr ess
and

c. broadcast Port = sel f.broadcast Port)

implies

c.creatededMessage = self.recei vedMessage)
and

(c.createdMessage = sel f.recei vedMessage

i mplies

(c. broadcast Address = sel f. broadcast Address
and

c. broadcast Port = sel f.broadcastPort)))
-- Result of receiveMessage()
post cond_3: result = self.recei vedMessage

