CHAPTER 12 - USER’'SMANUAL
Using agentM om

1. Introduction — What is agentM om

agentMom is aframework upon which distributed multiagent systems can be
developed. It isimplemented in Java and provides the basic building blocks for building
agents, conversations between agents, and the message that are passed in the
conversations. agentMom is capable of using five different type of conversations.

1. Unicagt conversation usng TCP/IP. Thisis basicdly a one-to-one
communication.

2. Secured unicast conversation using Secure Socket Layers (SSL) over TCP/IP.

3. Multicast conversation usng multicast socket and datagram packet. With
multicast conversation, an agent is cgpable of sending a message to a group of
agents that subscribes to the same multicast group.

4. Secured multicast conversation using multicast socket and datagram packet with
symmetric key dgorithm.

5. Broadcast conversation using datagram socket and datagram packet. With
broadcast conversation, an agent is capable of sending a message to all agents
within the same loca network.

An overview of how conversationsin agentMom work is shown below. An agent
dlows itsdlf to speak with other agents by starting a conversation handler that monitors a
local port for messages. All agent communication is performed via conversation classes,
which define valid sequences of messages that agents can use to communicate. WWhen one
agent wants to communicate with other agents, it starts one of its conversationsas a
separate Java thread. The conversation then establishes a socket connection with the other
agent’s message handler and sends the initial message in the conversation. When the
message handler receives amessage, it passes the message to the agent’ s recelve message
method that compares the message againg its known list of allowable message typesto
seeif it isthe dart of avdid conversation. If the conversation isvaid, the agent sartsits
side of the appropriate conversation, also as a separate Java thread. From that point on, al
communication is controlled by the conversation threads at of each agent. The
conversations send/read messages to/from others using built in readM essage and
sendM essage methods.

conversation conversation
handler make handler [W~._
et | connection & - N
. recave send initial recave)
/ messge message /
4
\ il
\ e
Y agentl agent2 |7
// \\
s method method)
/ cdls cdls S
‘\ ///
AN conversation conversation | g~
b type type
A yp send/read message yp

----> Thread/Sub-Obiect creation
Fiaure 19 new acentM om

101

2. How to use agentM om

The ksu.cismom package, which makes up the basics of agentMom, is shown below.
It consists of nine abstract classes, MomObject, Agent, Component, AgentConversation,
Conversation, SecureUnicastConversation, MulticastConversation,
SecureM ulticastConversation and BroadcastConversation, and seven concrete classes
MessageHandler, SecureUnicastHandler, MulticastHandler, SecureMulticastHandler,
BroadcastHandler, Message and Sorry. The agentMom and example source codes are
included in the CD with this document. Examples can aso be found &t the end of this

chapter.

Figure 20 Class diagram: new agentMom

102

Note that the name Conversation and MessageHandler are not consistent with the
other conversations because we want to the agentMom to be compatible to the older
verson. The previous verson of agentMom only has unicast conversation type
(Conversation class), the multicast, broadcast and secured conversations were added
later. Thus, the Conversation class can be thought of as the UnicastConversation class
and MessageHandler as the UnicastHandler.

agent agent

conver sation conver sation component component

conver sation conver sation

a Agent directly controls conversations b. Component controls conversations
Figure 21 new agentMom's ar chitecture

Furthermore, there are two architectures that can be applied to agentMom. The
firg architecture is shown in Figure a. In the first architecture, agent directly controlsthe
conversations. This architecture is very sraightforward since conversations belong to
agent. Basically, the conversations are originated from the run method in agent class. In
the second architecture as shown in Figure b, an agent conssts of one or more
components, and the conversations belong to components, not directly to agents. Also, an
agent can have multiple components and components can have multiple conversation.

The difference from the first architectureis that component is responsible for making
conversation with other agents. In the first architecture, agents are directly responsible for
controlling the conversation. Having components separately from agent dlows

developers to map the agent rol€' s tasks to the component. From now, we will refer to the
first architecture as agent-based architecture and the second architecture as component-
based architecture.

3. Requirements for using agentM om

3.1 agentMom package

3.2 javal.4isneeded in order to use SecureUnicastHandler, SecureUnicastConversation,
SecureMulticastHandler, SecureM ulticastConversation class. java 1.2 or higher is
required if the security features are not used.

3.3 truststore, keystore and certificate files are needed in order to use
SecureUnicastHandler and SecureUni castConversation class. (details on how to create
these filesare in section 4 of this chapter).

103

3.4 Multicast supported router is required in order to use multicast cgpability in

agentMom.
4. agentM om Package

4.1 MomObiject Class

MomObject is an abstract class that both Agents and Components inherit from. It
alows conversations to work with either agents or components as their parents. Class that
inherits from this dlass must implement the sendinterna method. The MomObject
consigts of 9 attributes as shown below:

MomObject parent — reference to other MomObject type. It is used by the Component class so that
conversation classes can work with either agents or components as their parents.

String hame — agent name

int port— unicast port number

int multicast_port [] — array of multicast port number

int broadcast_port — broadcast port number

int secure_unicast_port — secured unicast port number

int secure_multicast_port [] — array of secured multicast port number

InetAddressgroup [] — array of multicast address

InetAddressbroadcast_address— broadcast address

The user does not need to know the details of this class since this class does not
provide any service, and it is used within only within the agentMom package. Plesse refer
to the Component Design document for more detail on this class.

4.2 Agent Class

The Agent classis an aodtract class that defines the minimum requirements for an
agent to use agentMom package. This class inherits the MomObject class. It dso
implements Runnable interface to be runnable as a separate thread, which requires arun
method. Notice that run method is an abstract method, so the sub class of this class must
implement this method. If the agent-based architecture is used, the run method iswhere
the agent normdly initiates any conversations.

The agent class provides two main congdructors. Oneis for using only unicast
conversation. This constructor require two parameters, name of the agent and the port
number for unicast communication on which its unicast message handler
(MessageHandler dass) will listen for incoming messages. The congtructor is shown
below.
public Agent(String name, int port)

Another congtructor isfor using any or al type of conversations. The congtructor is
shown below.
public Agent(String name,

int unicast_port,

int[] multicast_port,

int broadcast_port,

int secure_unicast_port,
int[] secure_multicast_port)

It takes Sx parameters, String of agent name, integer of port used in each
conversation. If any port is assigned to be less than one, then it indicates that the
conversation is not going to be used.

104

Note that the arguments multicast_port and secure_multicast_port are an array of
integer type. It is because we alows agent to subscribe to multiple groups. Thus, one port
is used for one group. Assigning the first ement less than one indicates thet the
multicast will not be used.

For dl receive methods (recelveMessage, recelveM ulticastConversation, €etc),
they are used when the handlers (MessageHandler, MulticastHandler, etc) receive a Sart
of anew conversation from other agents. The handler will cal the receive method
corresponding to itself. For example, the MessageHandler will cal the receiveMessage
method, and MulticastHandler will call receiveMulticastConversation method, when it
receives astart of a new conversation from other agents.

Because the origind source of agentMom defines receiveM essage method to be
an abstract method, all sub class of the Agent class must implement this method.
However, the other types of conversation are optiona. Users only need to override the
receive methods that they want to use. These recelve methods are an empty method in
Agent class. However, the parameters passing to the methods must be the same as
defined in the Agent class,

Basicdly, users can implement by ether reading the message from the connection
stream (unicast) or reading the message directly (multicast and broadcast), and then
determining if it isavaid conversation.

For example, the receiveM essage method for unicast conversation can be
implement as shown below:
public voidreceiveM essage(

Socket server,

ObjectInputStreaminput,

ObjectOutputStream output)
{

inti;

M essage m;

Server_Registers;

Thread t;

try
{
m = (Message) input.readObject();
write(" Received message " + m.performative + " from " + m.sender);
if (m.performative.equals("register"))
{
t = newThread(new Server_Register(server, input, output, this, m));
t.start(); // start new thread

}
elseif (m.performative.equal s("unregister"))

t = new Thread(new Server_Unregister(server, input, output, this, m));
t.start(); // start new thread
}

else
{
System.out.printin(
" ** |nvalid Attempt to start new conversation with performative "
+ m.performative
+" from"
+ m.sende);

105

t = new Thread(new Sorry(server, input, output, this, m));
t.start(); // start new thread

}

catch (ClassNotFoundException cnfex)

{
System.out.printin(* ** ClassNotFoundException ");

}
catch (IOException cnfex)

{
System.out.printin(" ** |OException on port (ServerAgent.receiveM essage)");

}
}

In this case, after the receiveM essage method reads the message using the “m =
(Message) input.readObject();” method call, the performative of the message is checked
to seeif itisether “register” or “unregister”. In this case, these are the only two
performatives the agent can recognize that start conversations in which it can participate.
If it is elther of these performatives, its creates a new conversation object as anew thread,
sendsit theinitid message, and gartsit running using the conversation’s run method. If
the message received does not start with a recognizable performative, the agent sarts the
default Sorry conversation, which smply sends a sorry message in reply to the
performative.

Another example, the receiveM ulticastConversation method for multicast
conversation can be overridden as shown below:

public void receiveM ulticastConversation(
MulticastSocket mSocket,

Message m,
Vector multicast_queue)

{
inti;
Server_Register s;
Thread t;
write("Received message " + m.performative + " from " + m.sender);
if (m.performative.equals("calculate"))

{
t = new Thread(new MulticastServer(mSocket, multicast_queue, this,

m_port[0], m));
t.start();

}
}
In the case of multicast, the message is directly passed to the receive method. The

MulticastSocket mSocket is used to send out multicast messages and multicast_queueisa
message queue for the conversation to receive multicast message. Then, the performative
of the message is checked to seeif it is“cdculate’. In this case, thisisthe only one
performative that agent can participate. The other performatives are ignored. If the agent
recognizes the performative, it creates a new multicast conversation thread
(MulticastServer) and garts the thread.

Furthermore, agent may start a new component classinstead of conversation class
if component-based architectureis used, and the component class will be responsible for
garting the conversation.

106

4.3 AgentConversation Class

Thisclassis an abgract classthat al types of conversation inherit from. Itisa
generdization of dl conversationsin agentMom package. It defines the minimum
requirements for a conversation to bein agentMom package. It dso dlows user to easily
implement a new type of conversation for agentMom package. Sub class of this class
should override the sendM essage(), readMessage() and nonbl ockedReadM essage()
method and provides at least two type of constructors, conversation initiator and
conversation respondent. Users of agentMom do not need to know any thing about this
class snce it does not provide any service.
4.4 Component Class

The Component classis an abdtract dass that defines the minimum requirements
for acomponent. This dassinheritsfrom MomODbject class. It implements the Runnable
interface to be able to run as athread. It requires only one parameter, MomObject.
MomObject is used to be able to refer to the agent that uses this component.

The idea of Component classisto support agent architecture that component
performs different tasks. Each component is responsible for particular tasks. Thus, the
agents' role s tasks can be mapped to component. Also, components are responsible for
garting the conversation with other agents, instead of agent itsdlf. Therefore, agent darts
the components, and component starts the conversations.

There are two important attributes in this class, internal Message and external M essage.
Both attributes are a message queue of type Vector used for interna and external communication.
Asthe name imply, the internalMessage queue is used for communication between components
of agent. The externalMessage is used for passing message between component class and
conversation, so the message can be deliver to other agents by conversation class. Methods
involve with these attributes are checkExternal, checklnternal, enqueueExternal, enqueuel nternal
and sendinternal. These methods are very straightforward. For example, checkinterna isa
method for fetching a message from the internal M essage queue. The sendinternal method alows
the component to communicate with other components within an agent. This method smply
broadcast message to al active components within the agent.
4.5 MessageHandler Class

The MessageHandler class used to handle unicast connection from other agents.
When an agent is created, it needs to create a new message handler thread as shown
below:

MessageHandler h = new M essageHandl er(this.port, this);
h.start();

Two parameters are required to create this class. The two required parameters are
the port number and a pointer to the parent agent object. When started, the message
handler starts a socket server on the indicated port and waits for a connection from
another agent. When a connection is received, the message handler cdls the parent
agent’ s receiveM essage method with the connection and the input and output streams.
Thus, agent needs to implement the receiveM essage method and starts an appropriate
conversation as described in the Agent class.

4.6 SecureUnicastHandler Class

The SecureUnicastHandler is used to handle secured unicast connection from other
agents. Basicdly, it performs the same functiondity as the MessageHandler class with
security service. The differenceisthat this class use Secure Socket Layersto handle

107

secured communication over the TCP/IP connection. An agent can create this class as
shown below:
SecureUnicastHandler suh = new SecureUnicastHandler(this.port, this); suh.start();

To create the SecureUnicastHandler, it requires two parameters, port number and
areference to parent agent object. When started, the message handler starts a SSL. socket
server on theindicated port and waits for a connection from another agent. When a
connection is recelved, the message handler calls the parent agent’s
receiveSecureUnicastConversation method with the connection and the input and output
sreams. Thus, agent needs to implement the recelveSecureUnicastConversation method
and gtarts an appropriate conversation as described in the Agent class. The agent then
verifies the received message and starts an appropriate conversation.

SSL uses many cryptography technologies together such as public key, private
key, sesson key, authentication, digital signature, etc. These are trangparent to the user of
SSL technology. Basicdly, SSL Socket and SSL ServerSocket can be used amost the
same way as Socket and ServerSocket class. However, the “keystore’, “trustore” and
“certificate’ must be generated on both sides of communications. Also, each side of
communication must have “certificate’ of the other sde ingtalled. Please note that to be
ableto usethisclass, javaverson 1.4 isrequired. For example, the tool “keytool”,
provided in javaverson 1.4 packages, can be used to generate these requirements. An
example on how to create is shown at the end of this section.

Certificates must be created for clients and servers that need to communicate
securely using SSL. Java 1.4 uses certificates created using the Java “keytool” shipped
with J2SE. | used the following command to create an RSA certificate for the server

D:\>keytool -genkey -v -keyalg RSA
Enter keystore password: XXXXXX
What isyour first and last name?
[Unknown]: chairoj mekprasertvit
What is the name of your organizational unit?
[Unknown]: ksu
What is the name of your organization?
[Unknown]: cis
What is the name of your City or Locality?
[Unknown]: manhattan
What is the name of your State or Province?
[Unknown]: ks
What is the two-letter country code for this unit?
[Unknown]: us
Is CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us correct?
[no]: y
Generating 1,024 bit RSA key pair and self-signed certificate (M D5WithRSA)
for: CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us
Enter key password for <mykey>
(RETURN if same as keystore password):
[Saving C:\j2sdk-1.4.2\.keystore]
D:\>
Then, we need to export the self-signed certificate.

C.\j2sdk-1.4.2>keytool -export -keystore .keystore -file certificate
Enter keystore password: XXXXXX
Certificate stored in file <certificate>

108

Note that thisis a sdf-signed certificate. Alternatively, we can generate Certificate
Signing Request (CSR) with -certreq and send that to a Certificate Authority (CA) for signing,
but thisis only experimenting software.

Finally, we import the certificate into a new truststore.

C)\j2sdk-1.4.2>keytool -import -file certificate -keystore truststore
Enter keystore password: XXXXXX
Owner: CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us
Issuer: CN=chairoj mekprasertvit, OU=ksu, O=cis, L=manhattan, ST=ks, C=us
Serial number: 402ch4ae
Valid from: Fri Feb 03 05:27:42 CST 2004 until: Thu May 03 06:27:42 CDT 2004
Certificate fingerprints:

MD5: E7.87.63:4E:2F.04:FA:3A:15:92:31:70:4F.B0O:1F.C4

SHAL: 94:17:E2:0D:00:DE:09:A7:DA:6A:3E:68:83:FC:39:68:D7:02:25:6E
Trust this certificate? [no]: yes
Certificate was added to keystore

Notice that the certificate is vaid only a period of time (3 months). Now, we can
then run the class using SSL as shown below:
java-Djavax.net.ssl.keyStore=.keystore -Djavax.net.ss.key StorePassword=xxxxxx -
Djavax.net.ssl.trustStore=truststore -Djavax.net.ssl .trustStorePassword=xxxxxx agentTest
4.7 MulticastHandler Class

MulticastHandler isresponsible for initidizing and starting multicast socket,
induding joining/leaving multicast group. In generdly, it handles multicast connection
with other agents. It uses the MulticastSocket class to subscribe to multicast group. When
an agent is created, it needsto create a new multicast handler thread as shown below:

MessageHandler mh = new MulticastHandler(this, port, time-to-live, group); mh.start();
or

M essageHandler mh = new MulticastHandler(this, port, time-to-live, group, packetSize);
mh.start();

There are two congructors for this class. The difference is that the second
condructor dlows specifying the buffer size of received multicast message. The first
congtructor has a default of 1024 bytes of buffer Sze. Be aware that the buffer size of
recelved message must be equal or grester to the sent message. Both constructors have
the samefirst four parameters. The four parameters are a pointer to the parent agent
object, port number, time-to-live of the multicast message and the multicast group
address.

Note that the multicast addressis actually aclass D IP addressesthat isin the
range 224.0.0.0 to 239.255.255.255. And the time-to-live of the messageisin therange
of 0-255. The table below roughly shows the scope for a given range of time-to-live

P TTL | Scope
0-32 |Indtitution
33-64 |Region

65-128 |Continert
1129-255 |Unrestricted (global)

109

However, this is not aways true because the network may refuse to forward the
message, and message may be dropped by the network router because the multicast
socket use an unreliable protocol .

Bascdly, we use the multicast handler the same way as we use the
MessageHandler class. When MulticastHandler classis created, it arts the multicast
socket on the indicated port and joins to specified multicast group. Then, it automatically
sends a multicast message to the group indicating that this agent has join the group. When
aMulticestHandler receives the message indicating the join, it calsthe
receiveM ulticastJoin method in agent class. Agent has to override this method to make
use of it. For example, agent can keep track of the other agents who join the group after
itsdlf. The same thing applies to the receiveM ulticastiL eave method in the Agent class.
When the sendL eave method in the MulticastHandler classis executed. It automaticaly
sends message |l eave to the group and then unsubscribes from multicast group.

After thiscdassisinitidized, it waits for amessage from other agents. When multicast
handler recelves amessage, it will check whether the message isa sart of new
conversation/join/leave/conversation message. If it isastart of conversation, the
MulticastHandler smply cals the parent agent's receiveM ulticastcastConversation
method with the multicast socket, received message and multicast message queue. The
agent then verifies the recaived message and starts an appropriate conversation. If the
received message is for any multicast conversation class, it adds the message to the
multicast message queue. Then the multicast conversation class can get the message from
this queue later. If the join or leave message is recaived, it cdls the parent agent’s
receiveM ulticastJoin or receiveM ulticastL eave as described above. Moreover, the agent
may leave the group by cdling the method sendLeave in the MulticastHandler class.

Note that to properly using multicast protocol the network router does need to
support it; otherwise, the message may be delivered as broadcast message or not
ddivered a dl. Also, the operating systems must be configured to accept multicast
message.

4.8 SecureMulticastHandler Class

The SecureMulticastHandler is used to handle secured multicast connection from
other agents. Basically, it performs the same functiondity as the MulticastHandler class
with security service. The difference isthat this class use symmetric key dgorithm to
perform message encryption and decryption. An agent can create this class as shown
below:

SecureMulticastHandler smh = new SecureM essageHandler(this, port, time-to-live, group, key, algorithm);
smh.start();

or
SecureM ulticastHandler smh = new SecureM essageHandler(this, port, time-to-live, group, packetSize, key,
algorithm);
smh.start();

Detail of this classis dmost the same as the MulticastHandler. However, there are
two more parameters required in the congtructors, key and adgorithm. The key parameter
isthe Key classin the java Security package. It stores the private key used for encrypting
and decrypting message. Notice that we use the same key to encryption and encryption.
The dgorithm parameter is the name of agorithm used to generate the key and how to

perform encryption and decryption. Thus, al agentsin this multicast group need to have

110

the same key and agorithm. There are many ways to digtribute the key. For example,
agents can request the private key from atrust server using secured unicast conversation.

An agent can generate a key as shown below:
algorithm = "DES";
key = KeyGenerator.getl nstance(algorithm).generateK ey ();

In this case, we use the “DES’ adgorithm, and then use the KeyGenerator class to
generate arandom key based on the agorithm used. There is no restriction on how an
agent obtains the key and dgorithm aslong asit is the symmetric key agorithm. Message
encryption and decryption are automatically performed by agentMom package; message
is encrypted before sending and decrypted after receiving, o agent only providesthe key
and dgorithm, and make sure that al agentsin the group have the same key and
agorithm.

4.9 BroadcastHandler

BroadcastHandler is responsible for initidizing and starting datagram socket for
broadcast conversation. It uses the DatagramSocket class to send and receive broadcast
conversation in form of datagram packet.

When an agent is created, it needs to create a new broadcast handler thread to be
ableto receive agtart of broadcast conversation from the other agents. When
BroadcastHandler is created, it starts the DatagramSocket class for broadcast
conversation. Below is how an agent can sart the BroadcastHandler class.

BroadcastHandler bh = new BroadcastHandler(this, port, address);
bh.start();

or
BroadcastHandler bh = new BroadcastHandler(this, port, address, packetSize);
bh.start();

There are two condructors for this class. The difference is that the second
condructor dlows specifying the buffer dze of received multices message. The firg
congructor has a default of 1024 bytes of buffer sze. Be aware tha the buffer gze of
received message must be equal or greater to the sent message. Both congtructors have
the same first three parameters. The three parameters are a pointer to the parent agent
object, port number and the broadcast address.

In generd, broadcast address is in the form "xxx.xxx.xxx.255" for loca broadcast.
However, many networks do not alow the use of broadcast, and they may have a specific
address for broadcasting. Users have to check the availahility of this address.

After thisdassisinitidized, it waits for amessage from other agents. When
broadcast handler recelves amessage, it will check whether the message isa start of new
conversation. If it isagtart of conversation, the BroadcastHandler smply cdls the parent
agent's receiveBroadcastConversation method with the datagram socket, received
message and broadcast message queue. The agent then verifies the received message and
starts an appropriate conversation. If the recelved messageis for any broadcast
conversation class, it adds the message to the broadcast message queue. Then the
broadcast conversation class can get the message from this queue later.

111

4.10 Conver sation

The Conversation class is an abstract class that actudly carries out the message
passing between agents using unicast communication. There are three methods in the
Conversation class, readMessage, nonbl ockedReadM essage and sendM essage that
actually pass the messages back and forth over the socket connection. There areredly
two types of conversation classes that can be derived from the Conversation class, one for
the conversation initiator and one for the conversation respondent. The basic difference
liesin which congiructor is used and the details in the abstract run method, which must be
implemented in the concrete class derived from the Conversation class.

An example of an initiator conversation classisthe Client_Regigter dassin
Regiser-Deregister Example. To initiate this conversation, the ClientAgent crestes anew
Client_Register object (as a separate thread) using the Client_Register congtructor. This
constructor does not need to send a socket, input stream, or output stream (see second
Conversation congtructor in Register-Deregister Example) Snce, as an initiator, the
conversation creates a new socket and opens an input and output stream with a second
agent’s message handler. When the ClientAgent Sarts the Client_Regigter conversation
class, the Client_Register’ s run method is started. This method controls the conversation.
It creates anew connection using the following commands,
connection = new Socket(connectionHost, connectionPort);
output = new ObjectOutputStream(connection.getOutputStream());

output.flush();
input = new Objectl nputStream(connection.getl nputStream());

After the connection is made, the method enters awhile loop thet iterates until the
conversation is completed. Insde the while loop is a smple switch statement that has a
case for each possible state of the conversation. Actualy the state in the run method may
or may not correspond one-to-one with the states of the conversation as defined in a
MaSE conversation diagram. Actudly, it is possible to have one state for each state in the
diagram plus agtate for each trangtion out of astate. In asmple conversation such asthe
Client_Regigter conversation, this could be modeled as a Ssmple sequence of statements,
however, in the genera case, conversations may have loops and many branches out of a
sgngle gate, thus the switch within aloop provides the most genera mechanism for

modeling conversation states. The loop and switch statement are shown below.
while (notDone)
{
switch (state)
{
case0:
m.performative = "register”;
m.content = service;
sendM essage(m, output);
state=1;
break;
casel:
m = readM essage(input);
if (m.performative.equals("reply"))
notDone = falsg;
else
parent.write("** ERROR - did not get reply back **");
break;

112

In the code above, the Sate variable starts at Sate zero. In state 0, the message
performative is set to register and the message content is set to a string sent to the
conversation by the ClientAgent when it was initidized. Actudly the content of a
message can take any Java object type, but it must implement the interface Seridizable.
After sending the message, the Sate variable is set to 1 and the break statement takes us
out of the switch statement. Since notDone is dlill true, we stay in the loop, thistime
entering the case 1 option of the switch statement. At this point, we wait at the
resdMessage call until a message comes in from the other agent. In this case, we use the
readM essage method that is a blocking read (wait until message arrives). Thereisdso a
nonblockedReadM essage that alows the read message to timeout thus alowing the
conversaion to check to seeiif it has a message without waiting forever. The default
vaue of timeout is 100 milliseconds.

Then, if the message iswhat we expect (areply performative), we processiit;
otherwise we print an error message. In this case, we do nothing with the reply and
samply set the notDone variable to false so that we will exit the while loop.

After exiting the conversaion, we close the connection with the other agent using
the sequence of close statements shown below.

input.close();
output.close();

connection.close();

4.11 MulticastConver sation

The MulticastConversation class is an abstract class that actualy carries out the
message passing between agentsin the group using multicast communication. There are
two methods in the MulticastConversation class, readM essage, nonblockedReadM essage
and sendMessage that actualy pass the messages back and forth over the socket
connection. There are redlly two types of conversation classes that can be derived from
the MulticastConversation class, one for the conversation initiator and one for the
conversation respondent. The basic difference lies in which constructor is used and the
detailsin the abstract run method, which must be implemented in the concrete class
derived from the MulticastConversation class.

Detail on how to create amulticast conversation initiator and respondent is the same
as unicast conversation such as usng the while loop and switch statement in the run
method. However, the connection of multicast conversation is performed differently.
There is no need to create a connection socket for sending a message since the
MulticastConversation takes care of this. MulticastSocket uses connectionless protocol,
S0 thereis no input and out stream as in the unicast conversation.

In order to initiate multicast conversation, an agent need to start the multicast handler
firat because the handler is respongible for joining the multicast group, and itisaso
responsible for receiving al multicast messages and place in the message queue. The
conversation can fetch the message through the message queue by using its conversation
name as explained in the next paragraph. When the multicast conversation is created, the
constructor needs to cal the super class congtructor of the initiator Side as shown below:

super (agent, group, port, messageQueue);

113

The agent parameter is a pointer to the parent agent. The group, port and
messageQueue parameter are the multicast address, port for multicast and multicast
message queue, respectively. Note that the multicast message queue must be a pointer to
the same queue as the one the agent passes to the MulticastHandler’ s congtructor. An

example of multicast conversation initiator’ s run method can be created as shown below:
public void run()
{

Message m = new Message();

int state=0;

boolean notDone = true;

try

while (notDone)

switch (state)
{
case0:
m.performative = "calcul ate";
m.content = commandl;
startConversation(m, conversation_name, "MulticastServer");
state = 1;
break;
casel:
m=readM essage(" multicast");
if (m.performative.equals(‘reply"))
{
parent.write((String) m.content + " from "+ m.sender +"\n");
m.performative = "good bye";
m.content = command2;

sendM essage(m);
notDone = false
}
else
parent.write("** ERROR - did not get reply back **");
}
catch (IOException €)
{
parent.write("** 10 Exception in multicast conversation.");
}

}

Notice that the startConversation method is used on case 0. Thisis how multicast
conversation can be sarted. Any subsequence will use sendMessage instead as shown in
case 1. Also, there are three required parameters for sending amessage. Thefirst oneis
the Message object. The second one is the name of this conversation (the name of the
conversation must be unique from the other multicast conversation because the
destination conversation can then reply to the correct conversation. The last parameter is
the name of the dedtination conversation. The reason for using the name of conversation
isthat an agent may have multiple concurrent threads of multicast conversation that use
the same multicast group, hence sharing the same message queue. The originating and
destinating conversation are needed. Moreover, multicast conversation must also passthe
name to the readM essage method to fetch the message destined for this conversation. In

114

this case, the multicadt is the name of this conversation and MulticastServer is the name
of the destination conversation.

As same as any conversation class in agentMom, there' re two methods for fetching
message from the queue. One is a blocked read (readMessage), and another oneis
nonblocked read (nonblockedReadM essage). However, the nonblocked read in multicast
alows specifying the timeout in milliseconds.

Be aware that the conversation needs to know how many timesit has to perform read
message because thisis one-to-many conversation. The conversation may receive more
than one reply message, so the read message aso need to perform more than one times.
Thus, it may get an unexpected message if the read message does not perform properly.
4.12 SecureMulticastConversation

The SecureMulticastConversation classis an abstract classthat actudly carries out
the message passing between agents in the group using secured multicast communication.
SecureMulticastConversation has the same detail as the MulticastConversation class. The
agent has to gart the SecureMulticastHandler first before starting a secured multicast
conversation. Also, the private key and the name of the must be the same asthe
SecureMulticastHandler class uses. Below is how the conversation can cdl the super
class congructor of theinitiator Sde;
super (agent, group, port, messageQueue, key, algorithm);

The details on how to send and receive message can be performed the same way asin
the multicast conversation. Message encryption and decryption is done automatically.

4.13 Secur eUnicastConver sation

The SecureUnicastConversation classis an abdtract classthat actudly carries out
the message passing to agents in the same group using secured multicast communication.
Because this class relies on the SSL technology as same as the SecureUnicastHandler
class, it has the same requirements as the SecureUnicastHandler class. Thereis only one
different between using this class and the Conversation class, the socket. In the
Conversation class, the Socket classis used to make connection to the other agents. In
this class, the SSL Socket is used instead. The code below shows how to create the
SSL Socket class to make a connection with other agents:.

SSL SocketFactory sslFact =
(SSL SocketFactory) SSL SocketFactory.getDefault();
connection = (SSL Socket) sslFact.createSocket(connectionHost, connectionPort);

output = new ObjectOutputStream(connection.getOutputStream());
input = new Objectl nputStream(connection.getl nputStream());

After we initidize the connection, output, input, we can then use these variables as
same as we do in the Conversation class. To exit the conversation, we aso do the same
way asin the Conversation class as shown below.

input.close();
output.close();

connection.close();

4.14 BroadcastConver sation

The BroadcastConversation classis an abstract class that actualy carries out the
message passing to al agents under the same loca network. The BroadcastConversation
class uses the DatagramSocket to send and receive message. In fact, the DatagramSocket

115

classisasuper class of the MulticastSocket class. Detail on using broadcast conversation
is the same as in multicast conversation. As same as multicast conversation, the
BroadcastHandler is needed to Sart first. Below is how the conversation can cal the
super class congructor of theinitiator sde:
super (agent, broadcastAddress, port, messageQueue);

An example of the whileloop in broadcast conversation initiator’ s run method can
be created as shown below:
while (notDone)

switch (state)
{
case0:
m.performative = "calculate”;
m.content = commandi;
startConversation(m, conversation_name, "BroadcastServer");
state=1;
break;
casel:
m=readM essage(" broadcast");
if (m.performative.equals("reply"))
{
parent.write((String) m.content + " from "+ m.sender +"\n");
m.performative = "good bye";
m.content = command2;
sendM essage(m);
notDone =false
}

else
parent.write("** ERROR - did not get reply back **");

}
}

Please be aware that sending many broadcast messages can easily flood the network.
Also, message can be lost or unddivered easily using thistype of conversation. Below
are some of the possible causes:

1) The network do not alow broadcast message.

2) The broadcast addressisincorrect.

3) The router drops message, especidly during busy traffic.

4) The packet

4.15 M essage Class

Message class defines the fidd used in the message passed back and forth
between agents. Note that these fields are derived from the fidds in a KQML message,
and some of them are automaticdly filled by the sendMessage method in each type of
conversation classes. In agentMom, there is no redtriction in using these fidds. For more
information about KQML please refer to http://www.fipaorg It is farly straightforward

and congists of the following attributes.
Object content = null
Support for complex object that encapsulates a number of attribute types. These complex objects can be

used to pass multiple parametersin a single message. Note that in order to pass an object across a socket

connection, it must implement the interface Serializable.

116

String force= null

Specify whether the sender will never deny the meaning of the performative.
String host = null

Host name that this message is sent to.

String inreplyto = null

The expected |abel in areply.

String language = null

Name of representation language of the content.

String ontology = null

Name of the ontoloty used in the content

String performative = null

Describe the action that the message intends. The user can define any performative they feel are necessary.
intport=0

Port number used for the message.

String receiver = null

Name of the receiver

String replywith = null

Whether the sender expectsareply, and if so, alabel for the reply.

String sender = null

Name of the sender (agent's name).

When a conversation calls the sendMessage method, it automaticdly fill the sender, hogt,
and port fields using the parent agent’s name and port attributes and automatically gets the host
name from the system. The replywith and inreplyto fields are aso automaticaly fill if the
sendMessage is cadled from MulticastConversation, SecureMulticastConversation and
BroadcastConversation. The other fields of interest in an agentM om message are the performative
and content fields. The performative field describes the action that the message intends and is
used in the agent and conversation classes to

(1) Determine the type of conversation being requested and
(2) To control the execution of a conversation in the run method.

Because agentMom does not have any specific performative types, users can
define any performative they fed are necessary. The content of an agentMom messageis
aso very generd. Badicdly, the message passes any vdid Java object type. This can be
as smple as agtring, or amore complex object that encapsulates a number of attribute
types. These complex objects can be used to pass multiple parametersin a single message
as shown in the class below.

public class ComplexObject implements Serializable

{
String agent;
String host;
int port;
String service;
public ComplexObject(String a, String h, int p, String ser)
{
agent = g;
host = h;
port = p;
service = ser;

}

This class encapsulates four parameters (three strings and an integer) that can be
assigned to message content field. Note that in order to pass an object across a socket
connection, it must implement the interface Seridizable.

117

Note that in order to pass an object across a socket connection, it must implement
the interface Seridizable.

4.16 Sorry Class

The Sorry class defines a general-purpose conversation to reply "Sorry" to any
unknown/unexpected type of unicast conversation. It isa simply concrete class of Conversation
class, so there is no implementation required in this class. Automatically, performative field is set
to "sorry” and content field is set to "unknown conversation request” when using this class. The
example on how to use this class is shown above when we described the Agent class.

5. Step By Step Construction

To build an gpplication using the agentMom framework, you need to perform the

fallowing:

1) Get acopy of agentMom classes (included in the CD with this document).

2) Define your agent classes and conversations according the MaSE (Multiagent
Systems Engineering) methodology. An environment, agentTool, is available to help
you with this. Please note that the current agentTool only supports code generation
for unicast conversation.

3) For each agent classin your system, extend the agentMom Agent class.

a) Defineany necessary receive message methods for each type of conversation to
handle al conversations for which the agent is a respondent.

b) For each action defined in the set of conversations in which this agent may
participate, define amethod in the agent class. Thiswill be your interface to the
conversaion.

c) Implement the run method as the main procedure of the method. If your agent
initiates any conversations, this could be where they will originate.

d) If youwant to run your agent as a tand-aone application, create a main method
to initidize the agent running.

4) For each conversation in your system design, creste two conversation classes, in
initiator and a respondent class.

a) For eachinitiator class, define a congtructor that includes, as parameters, the first
message sent.

b) For each respondent class, define a constructor that includes, as a parameter, the
message read by the parent recelve conversation method before the conversation
thread was started.

c) Implement the run method
i) Define agtate variableinitidized to sate 0.

i) If itisaninitiator conversation, creste a connection with the agert of interest.

iif) Creste a switch statement within awhile loop where each case in the switch
statement corresponds to a state or atrangtion. Ensure at least one of the
dates exits the while loop.

iv) Close the connection.

5) Create any supporting classes for things such as
a) Objectsthat combine multiple parameters into asingle object.

b) System setup/testing routines.

¢) Components of intdligent agents.

6. Examples

118

Register-Deregister Example
ClientAgent

package ksu. cis. nontest;

inmport java.aw.*;
inmport java.aw.event.*;
inmport java.io.*;
import java.net.*;
inmport afit.nmom *;
/**
* This type was created in Visual Age.
*/
public class dientAgent extends Agent inplenents ActionListener {
private TextArea theText;
private Panel textPanel;
private TextField Tnane;
public String serverHost;
public int serverPort;

/**
* dientAgent constructor commrent.
*/
public dientAgent(String agent Nane, int agentPort,
String sHost, int sPort) {
super (agent Nane, agent Port);

this.serverHost = sHost; // the Host to connect to
this.serverPort = sPort; // the Port to connect to

/* server initialization */
MessageHandl er h = new MessageHandl er (this. port, this);
h.start();

/* window initialization */
set Si ze(400, 300); // set default size & height of new w ndow

addW ndowLi st ener (new W ndowDest royer ());
setTitle(this.name); // name the wi ndow
set Backgr ound(Col or. red);

set Layout (new Bor der Layout ()) ;

/] text panel

t ext Panel = new Panel ();

t heText = new Text Area(12, 50);

t heText . set Backgr ound(Col or. white);
t heText . set For egr ound(Col or. bl ack);
t ext Panel . add(t heText);

add(text Panel, "Center");

/1 top | abel
Panel nanmePanel = new Panel ();
namePanel . set For egr ound(Col or. white);
Label naneLabel = new Label ("Enter text of your choice: ");
nanePanel . add(naneLabel , "Center");
add(nanePanel, "North");
}
/**

* This method was created in Visual Age.
*/
public void actionPerforned(Acti onEvent e) {
if (e.getActionComrand().equal s("Exit")) {

119

Systemexit(0);
} else

theText.setText ("Error in neno interface!");
t ext Panel . repaint();

}

/**
* This method was created in Visual Age.
*/
public String get_service() {
if (this.nane.equals("Cient-1"))
return "Laundry";
if (this.nane.equals("dient-2"))
return "Dry d eaning";
if (this.name.equals("dient-3"))

return "Drill Press Cperator”;
el se
return "Unknown";
}
/**
* This method was created in Visual Age.
*/

public static void main(String[] args) {
String serverHost;
int serverPort = 5000;

try {

server Host = | net Addr ess. get Local Host () . get Host Nane() ;

CientAgent s =

new CientAgent("dient", 3000, serverHost, serverPort);

s.run();
} catch (UnknownHost Exception e) {

Systemout. println(" ** Host Exception when starting dientAgent");
}

}
/**
* recei veMessage met hod conmment.
*/
public void recei veMessage(Socket server, ojectlnputStreaminput,
Obj ect Qut put Stream out put) {
int i;
Message m
Server _Regi ster s;
Thread t;

/* define all possible conversations receivable here */
tr
Y rg = (Message) input.readQoject();
System out . printl n(
" ** |nvalid Attenpt to start new conversation with performative
+ mperformative + " from" + m sender);
t = new Thread(new Sorry(server, input, output, this, m);
t.start(); // start new thread
} catch (d assNot FoundExcepti on cnfex) {
Systemout. println(" ** d assNot FoundException ");
} catch (1COException cnfex) {
Systemout. println(" ** | OException on port
(Server Agent . recei veMessage) ") ;

}
}

120

/**

* This method was created in Visual Age.
*/

public void run() {

Thread init;
t heText. append("Starting dient \n");
set Vi si bl e(true);

init = new Thread(new O ient_Register(this, serverHost, serverPort,
get _service())); // start conversation
init.start();

int j;
for (int i = 0; i < 10000000; i++)
=i -1
init = new Thread(new O ient_Unregister(this, serverHost, serverPort,
get _service())); // start conversation

init.start();

}

/**

* This method was created in Visual Age.

*/

protected void wite(String s) {
this.theText.append(s + "\n");

}

}

121

Server Agent

package ksu. cis. nontest;

inmport java.util.*;
inport java.aw. *;
inmport java.awt.event.?*;
inmport java.net.*;
inmport java.io.*;
inmport afit.nmom*;

/**

* This type was created in Visual Age.

*/

public class ServerAgent extends Agent inplenents ActionListener {
private TextArea theText;
private Panel textPanel;
private TextField Tnane;

private Vector registrants = new Vector(25);

/**
* Server Agent constructor conment.
*/
public ServerAgent(String n, int p) {
super(n, p);
MessageHandl er handl er; /* server initialization */

handl er = new MessageHand| er (port, this);
handl er.start();

/* window initialization */
set Si ze(500, 300); // set default size & height of new w ndow

addW ndowLi st ener (new W ndowDestroyer()); // create |istener
setTitle("Server"); /1 name the w ndow

set Backgr ound(Col or. bl ue) ;

set Layout (new Bor der Layout ());

/1 text panel

t ext Panel = new Panel ();

t heText = new Text Area(12, 60);

t heText . set Backgr ound(Col or. white);
t heText . set For egr ound(Col or. bl ack) ;
t ext Panel . add(t heText);

add(text Panel, "Center");

/1 top | abel

Panel nanePanel = new Panel ();

nanmePanel . set For egr ound(Col or. white);

Label naneLabel = new Label ("Enter text of your choice: ");
nanmePanel . add(naneLabel , "Center");

add(nanePanel, "North");

set Vi si bl e(true);

}
/**
* This method was created in Visual Age.
*/
public void actionPerfornmed(ActionEvent e) {
if (e.getActionComrand().equal s("Exit")) {
Systemexit(0);
} else
t heText.set Text ("Error in nmeno interface!");

122

t ext Panel . repaint();

}

/**

* This method was created in Visual Age.

*/

protected void add_service(String agent, String service, String host, int port)

{
}

/**
* This method was created in Visual Age.
*/
public static void main(String[] args) {
Server Agent s = new Server Agent (" Server", 5000);

this.regi strants. addEl enent (new Regi stration(agent, host, port, service));

s.run();
/**
* This method was created in Visual Age.
*/

protected void printRegistrants() {
java.util.Enunmeration enum= this.registrants. el enments();
Regi stration v;
enum = this.registrants. el ements();
whi |l e (enum hasMor eEl enents()) {
v = (Registration) enum next El ement ();
this.theText.append("< " + v.agent + ", " + v.service + ", " + v.host +

+ v.port + ">\n");

/**

* recei veMessage met hod conmment.
*/

public void recei veMessage(Socket server, bjectlnputStreaminput,
bj ect Qut put Stream out put) {
int i;
Message m
Server _Regi ster s;
Thread t;

/* define all possible conversations receivable here */
try {
m = (Message) input.readoject();
this. theText . append(" Recei ved nessage " + mperfornative
+ " from"+m sender+"\n");
if (mperformative.equal s("register")) {
t = new Thread(new Server_Regi ster(server, input, output, this, m);
t.start(); // start new thread
} else
if (mperformative.equal s("unregister")) {
t = new Thread(new Server_Unregi ster(server, input, output,
this, m);
t.start(); // start new thread
} else {
Systemout. printl n(
" ** |Invalid Attenpt to start new conversation wth
performative "
+ mperformative + " from" + m sender);

123

t = new Thread(new Sorry(server, input, output, this,
t.start(); // start new thread

} catch (d assNot FoundExcepti on cnfex) {
Systemout. println(" ** d assNot FoundException ");
} catch (1 Oexception cnfex) {
Systemout. println(" ** | OException on port
(Server Agent . recei veMessage) ") ;

}
}
/**
* This method was created in Visual Age.
*/
protected void renove_service(String agent, String service,
String host, int port) {
java.util.Enuneration enum= this.registrants. el enents();
Regi stration v;
whi |l e (enum hasMoreEl enents()) {
v = (Registration) enum nextEl enent();
if (v.agent.equal s(agent) && v.service. equal s(service)
&& v. host. equal s(host) &&% v.port == port)
this.registrants. renoveEl enent (v);

}

/**

* This method was created in Visual Age.
*/

public void run() {

t heText . append("Starting Server \n");
set Vi si bl e(true);

}
/**

* This method was created in Visual Age.
*/
protected void wite(String s) {
this.theText. append(s + "\n");
}

}

124

m);

Client_Register

package ksu. cis. nontest;

/**
* This type was created in Visual Age.
*/
inmport java.net.*;
inmport java.io.*;
inmport afit.nmom*;
public class dient_Register extends Conversation {
CientAgent parent; // override parent
String service;

public dient_Register(dientAgent a, String host Nare,
int portNum String theService) {
super (a, host Name, portNunj;
parent = a;
servi ce = theService;

}

public void run() {
Message m = new Message();
int state = 0;
bool ean not Done = true;
parent.wite("Starting dient_Register conversation.");

//set up conversation
try {
connection = new Socket (connecti onHost, connectionPort);
out put = new (bj ect Qut put St rean(connecti on. get Qut put Streamn());
out put. flush();
i nput = new Qoj ect | nput Strean{connection. getlnputStrean());
whi |l e (not Done) {
switch (state) {
case O :
m perfornative = "register"”;
m content = servi ce;
sendMessage(m out put);
state = 1,
br eak;
case 1 :
m = readMessage(i nput);
if (mperformative.equal s("reply"))
not Done = fal se;
el se
parent.wite("** ERROR - did not get reply back
br eak;
}
}
i nput . cl ose();
out put . cl ose();
connection. cl ose();
} catch (UnknownHost Exception e) {
parent.wite("** Unknown Host exception in dient_Register.");
} catch (ECFException oef) {

parent.wite("** Server termnated connection in Cient_Register.");

} catch (1 OCexception e) {
parent.wite("** 10 Exception in dient_Register.");
}

125

KAy

Client_Unregister

package ksu. cis. nontest;

/**
* This type was created in Visual Age.
*/
inmport java.net.*;
inmport java.io.*;
inmport afit.nmom*;
public class dient_Unregister extends Conversation {
CientAgent parent; // override parent
String service;

public dient_Unregister(dientAgent a, String host Nane,
int portNum String theService) {
super (a, host Name, portNunj;
parent = a;
servi ce = theService;

}

public void run() {
Message m = new Message();
int state = 0;
bool ean not Done = true;
parent.wite("Starting dient_Unregister conversation.");
//set up conversation
try {
connection = new Socket (connecti onHost, connectionPort);
out put = new (hj ect Qut put St rean(connecti on. get Qut put Strean());
out put. flush();
i nput = new Qbj ect | nput Streamn(connecti on. getl nput Strean());
whi |l e (not Done) {
switch (state) {
case 0O :
m set Performati ve("unregister");
m content = service;
sendMessage(m out put);
state = 1;
br eak;
case 1 :
m = readMessage(i nput);
if (mperformative.equal s("reply"))
not Done = fal se;
el se
parent.wite("** ERROR - did not get reply back ** \n");
br eak;

}

i nput.close();
out put . cl ose();
connecti on. cl ose();
} catch (UnknownHost Exception e) {
parent.wite("** Unknown Host exception in dient_Unregister.");
} catch (ECFException oef) {
parent.wite("** Server term nated connection in Cient_Unregister.");
} catch (1 COexception e) {
parent.wite("** 10 Exception in dient_Unregister.");
e.printStackTrace();

126

Server Register

package ksu. cis. nontest;

/**
* This type was created in Visual Age.
*/
inmport java.net.*;
inmport java.io.*;
inmport afit.nmom*;
public class Server_Regi ster extends Conversation {
Server Agent parent; // override parent

public Server_Regi ster(Socket s, QbjectlnputStreami, CbjectQutputStream o,
Server Agent a, Message nil) {

super(s, i, o, a, m);

parent = a;

}

public void run() {
int state = 0;
bool ean not Done = true;
parent. wite("Gt >>" + mgetPerformative() + " - " + mgetContent()
+ " from" + mgetSender());

//set up conversation
try {

whi |l e (not Done) {

switch (state) {
case 0 :
parent. add_servi ce(m sender, (String) mcontent, m host,

m port);
parent. printRegi strants();
state = 1;
br eak;

case 1 :
m set Performative("reply");
m set Content (" COK");
sendMessage(m out put);
not Done = fal se;
}
}

i nput.close();
out put . cl ose();
connection. cl ose();
} catch (UnknownHost Exception e) {
parent.wite("** Unknown Host exception.");
} catch (ECFException oef) {
parent.wite("** Server term nated connection.");
} catch (I Cexception e) {
parent.wite("** 10 Exception. (Server_Register)");
e.printStackTrace();

127

Server _Unregister

package ksu. cis. nontest;

/**
* This type was created in Visual Age.
*/
inmport java.net.*;
inmport java.io.*;
inmport afit.nmom*;
public class Server_Unregister extends Conversation {
Server Agent parent; // override parent

public Server_Unregister(Socket s, ChjectlnputStreami, ObjectQutputStream o,

Server Agent a, Message nil) {
super(s, i, o, a, m);
parent = a;

}

public void run() {
int state = 0;
bool ean not Done = true;

parent. wite("Gt >>" + mgetPerformative() + " - " + mgetContent()

+ " from" + mgetSender());

//set up conversation

try {
whi | e (not Done) {

switch (state) {

case O :
state = 1;
br eak;
case 1 :
parent.renove_servi ce(m sender, (String) mcontent,
m port);
parent. printRegi strants();
state = 2;
br eak;
case 2 :
m set Performative("reply");
m set Content (" OK");
sendMessage(m out put);
not Done = fal se;
br eak;
}
}

i nput.close();
out put . cl ose();
connecti on. cl ose();
} catch (UnknownHost Exception e) {
parent.wite("** Unknown Host exception.");
} catch (ECFException oef) {
parent.wite("** Server term nated connection.");
} catch (1 COexception e) {
parent.wite("** 10 Exception.");
e.printStackTrace();

128

m host,

Registration

package ksu. cis. nontest;

/**
* This type was created in Visual Age.
*/
public class Registration {
String agent;
String host;
int port;
String service;
/**
* Regi stration constructor coment.
*/
public Registration(String a, String h, int p, String ser) {
agent = a;
host = h;
port = p;
service = ser;
}
}

129

Tester

package ksu. cis. nontest;

/**

* This type was created in Visual Age.
*/

inmport java.net.*;

public class Tester {

/**
* Tester constructor comment.
*/
public Tester() {
super () ;
}
/**
* Starts the application.
*/

public static void main(java.lang.String[] args) {
int NUMCLI ENTS = 3;
int cPort = 3000; // starting port address
int sPort = 5000;
String host;
Thread server;
Thread clients[] = new Thread[NUMCLI ENTS] ;
/1

try {
host = | net Addr ess. get Local Host (). get Host Nare() ;

Systemout.println("Starting Server Agent on host " + host);
server = new Thread(new ServerAgent ("Server", sPort), "Server");
server.start();

for (int i =0; i <clients.length; i++) {
Systemout.printin("Starting ient Agent" + (i + 1));
clients[i] = new Thread(new CientAgent("dient-" + (i + 1),

cPort + i, host, sPort), "dient-" + (i + 1));

clients[i].start();

}
while (true);
} catch (UnknownHost Exception e) {
Systemout. println(" ** Unknown Host Exception when starting

dientAgent");
}

}
}

130

WindowDestroyer

package ksu. cis. nontest;

inmport java.aw.*;
inport java.awt.event.?*;
/**
* This type was created in Visual Age.
*/
public class WndowDestroyer extends W ndowAdapter {
/**
* This method was created in Visual Age.
*/
public void wi ndowd osi ng(WndowEvent e) {
Systemexit(0);
}

}

131

File Sharing Example

The File Sharing example conggts of client agents who want to request files from the
sarver and the server agents who are responsible for sending files. The scenario starts by
eech dart joining the same multicast group. The client agents can request afile by
sending a unicast request to any server agent in multicast group. If that server agent does
not have the file, it then sends multicast to the group to send thefileingtead. In this
scenario, we assume that each server contains files different from the others, so thereis
only who actualy sendsthe file. Also, the dient agent always request exigting files
because the client agent do not get any answer if the fileis not found in the group.

132

ClientAgent

package ksu. ci s. exanpl e. Fi | eShari ng;

inmport java.io.*;
inmport java.util.*;
inmport ksu.cis.nom?*;
inmport java.net.*;

/**

* Client agent class. This agent request a file fromserver agent.
* Chairoj Mekprasertvit
*
*/
public class dientAgent extends Agent
{
private int state = 0;
private bool ean alive = true;
public static final int unicastPort = 3000;
private dient Agent GJ gqui;

public dientAgent (O ientAgent GJ gui)

{
super ("dient Agent", unicastPort);
this.gui = gui;
this.port = unicastPort;
MessageHandl er h = new MessageHandl er (uni castPort, this);
h.start();
/**
* The perfornmative that this agent can participate is "found file".
* Other performatives will be ignored.
*
*/

public void recei veMessage(
Socket server,
Coj ect | nput Stream i nput,
(oj ect Qut put St ream out put)

{
Thread t;
Message m
try
m = (Message) input.readject();
i f(mperformative. equal s("found file"))
{
t = new Thread(new dient Recei veFil e(server, input, output, this, m
gui));
t.start();
}
cat ch(d assNot FoundExcept i on cnf ex)
Systemout.printin("** dass not found exception in " + this.nane);
}
cat ch(1 OException i oex)
Systemout.println("** | CException in " + this.nane);
}
}

public void sendRequest (String req)

133

StringTokeni zer token = new StringTokeni zer(req);
Thread init;
init = new Thread(
new C i ent Request Fil e(this, token.nextToken(), token. nextToken()
gui));
init.start();

}
/**

* run nmethod for client. It put agent to sleep for 1000 mllisec
* @ee java.l ang. Runnabl e#run()

*/

public void run()

whi l e(alive)
try
Thr ead. sl eep(1000);

cat ch(I nterruptedException iex)

Systemout.printIn("** Thread Interrupted in + this.nane);
}
}
}

}

134

ClientAgentGUI
package ksu.cis. exanpl e. Fi | eShari ng;
inmport java.aw.*;
inmport java.aw.event.*;

/**
* QU for dient agent. It has a text field to input what file to request,
* and fromwhomeg. “192.150.121.19 readne.txt”

* Chairoj Mekprasertvit

*/
public class dientAgent QU extends Frame
{

private TextField field;
private TextArea display;
private dientAgent agent;

/**
* Constrcutor for agent_interface.
* name
* br oadcast Addr ess
*/
public dientAgent GUI ()
{

super ("Please Wait...");

set Layout (new BorderLayout());
field = new TextFi el d();

di splay = new Text Area();

add(di splay, "Center");

di spl ay. set Backgr ound(Col or. white);
di spl ay. set For egr ound(Col or. bl ack) ;
add(field, "South");

set Si ze(300, 200);
set Vi si bl e(true);

show() ;

agent = new dientAgent(this);
Thread t = new Thread(agent);
t.start();

/lcreate field for outgoing secured nulticast nmessage.
fiel d.set Enabl ed(fal se);
field.addActi onLi st ener

new Acti onLi st ener ()

public void actionPerforned(Acti onEvent e)

{
set Di spl ay(e. get Acti onConmand());
agent . sendRequest (e. get Acti onConmand()) ;

}

}
)
}

public void startU ()

field. set Enabl ed(true);

setTitle("Demo I11: " + agent.nane);
setDisplay("** dient started.");

}

135

/**

* <p>Enable the TextField. Allows user to type secured multicast nessage.
*/
public void setField()

field. set Enabl ed(true);

}

public void setDi splay(String m
{ di spl ay. append(m + "\n");

}

/**

* main method to start the client.

* @aram args

*/

public static void main(String[] args)

CientAgentGQUJ gui = new CientAgentGUJ ();
gui . addW ndowLi st ener

new W ndowAdapt er ()

public void wi ndowd osi ng(W ndowEvent e)

{
Systemexit(0);

}
}

gui.startU ();
}/ 1 end of nain method

136

ClientReceiveFile
package ksu.cis. exanpl e. Fi | eShari ng;

inmport ksu.cis.nom?*;
inport java.net.*;
inmport java.io.*;

/**

* Uni cast conversation respondent. It send an acknow edgenent nessage when the

* file is received.

* Chairoj Mekprasertvit
*/
public class dientReceiveFile extends Conversation

{

private dient Agent parent;
private dient Agent QU qui;
private File file;
public dientReceiveFil g(
Socket s,
oj ect I nput Stream i,
Chj ect Qut put Stream o,
dient Agent a,
Message m
C i ent Agent QU gui)

o, a, m;

gui ;

super(s, i,

parent = a;

this.gui =
}

public void run()

{
int state = 0;
bool ean not Done = true;

try
whi | e(not Done)

switch(state)
{
case O:
Infohject info = (InfoChject) mcontent;
try

Fi | eCQut put Stream out = new Fil eQut put St rean(i nfo. getFi |l eNane());

out.wite(info.getFile());
out.close();

}
cat ch(1 OExcepti on i oex)
{

parent.wite("** Error witing file.

}

state = 1;

+ ioex.toString());

case 1:
Message reply = new Message();
reply.setPerformative("ack");
sendMessage(reply, output);
gui . setDi splay("** Agent successfully get the file");
not Done = fal se;
br eak;

137

i nput. cl ose();
out put . cl ose();
connection. cl ose();

}
catch (UnknownHost Exception e)
{

parent.wite("** Unknown Host exception in dient_Register.");

}
catch (EOFException oef)
{

parent.wite("** Server term nated connection in Cient_Register.");

}
catch (1 OException e)

{
parent.wite("** |10 Exception in Cient_Register.");

}

}/ 1 end run nethod
}// end class

138

ClientRequestFile

package ksu.cis. exanpl e. Fi | eShari ng;

inmport ksu.cis.nom?*;
inport java.net.*;
inmport java.io.*;

/**

* Uni cast conversation initiator. It basically send a request for file and
* waiting for the accept message.

* Chairoj Mekprasertvit
*/
public class dientRequestFile extends Conversation

{

private dient Agent parent;
private dient Agent QU qui;
private String fil eNane;
private String serverNang;
public dientRequestFile(

Cl i ent Agent agent,

String server,

String req,

Cient Agent GU gui)

super (agent, server, agent.port);
parent = agent;
fileName = req;
server Nane = server;
this.gui = gui;
}

/**
* j ava. | ang. Runnabl e#r un()
*/
public void run()
{
Message m = new Message();
int state = 0;
bool ean not Done = true;
try
{

connection = new Socket (connecti onHost, connectionPort);

out put = new (bj ect Qut put St r ean(connect i on. get Qut put Strean());
out put. flush();

i nput = new (bj ect | nput Strean{connection. getlnputStream));
whi | e (not Done)

switch (state)

case 0 :
m performative = "find file";
m content = fil eNane;
t hi s. sendMessage(m out put);
state = 1;
br eak;
case 1 :
m = this. readMessage(i nput);
i f(mperformative. equal s("reply"))
{

gui .setDi splay("The request is " + mcontent.toString());

}

el se

139

parent.wite("** ERROR - did not get reply back **");
not Done = fal se;
br eak;
}
}
i nput. cl ose();

out put. cl ose();
connection. cl ose();

}
catch (UnknownHost Excepti on e)
{

parent.wite("** Unknown Host exception in unicast. " + e.toString());

}
catch (ECFException oef)
{
parent.wite(
"** Server termnated connection in unicast. " + oef.toString());

}
catch (1 CException e)
{
parent. wite("** 10 Exception in unicast. " + e.toString());
}
}
}

140

InfoObj ect
package ksu.cis. exanpl e. Fi | eShari ng;
inmport java.io.*;
/**
* I nfoObject type for the content field of Message class. It contains the
* requesting file's nane, the file and the requesting agent |P address.
* @ut hor Chairoj Mekprasertvit
*/
public class InfoChject inplenents Serializable

{

private String fileName = null;
private byte file[];

private String client = null;

public InfoChject(String f, String c)

fileName = f;
client = c;

}
public InfoChject(String f, byte b[])

fileName = f;
file = b;

E)ublic String getFil eNane()
return fil eNane;

E)ublic String getdient()

{ return client;

}
public byte[] getFile()

return file;

}

141

Server Agent
package ksu.cis. exanpl e. Fi | eShari ng;
inmport java.io.*;
inmport java.net.*;
inmport java.util.*;
import ksu.cis.nom?*;

/**
* Server agent that has two services: get the file request and send file.
* Chairoj Mekprasertvit
*/
public class ServerAgent extends Agent
{
public static final int nulticastPort[] = {3002, 3003};
public static final int secureMulticastPort[] = {0, 0};
public static final int unicastPort = 3000;

public ServerAgent ()

super (" Server Agent", unicastPort, nulticastPort, 0, O,
secureMil ticastPort);

try

{

super.group = new | net Address[1];
super. group[0] = | net Addr ess. get ByNane("239. 192. 100. 100");

catch (Throwabl e e)

wite("lInvalid Internet Address");

}

MessageHandl er h = new MessageHand| er (uni cast Port, this);

h.start();

Miul ti cast Handl er mh = new Mul ticastHandl er(this, nulticastPort[0], 1,
group[0]);

mh. start();

/**
* recei veMessage nethod. Wien receive a unicast connection from other agent,
* jt find the fileinitself. If the file not found, it send nulticast
* nmessage to the group to send the file instead.
*/
public void recei veMessage(
Socket server,
Coj ect | nput Stream i nput,
(oj ect Qut put St ream out put)

Thread t;

Message m

try

{
m = (Message) input.readoject();
/'l send accept request
if(mperformative.equal s("find file"))

Server RespondRequest srr = new Server RespondRequest (
server, input, output, this, m;

t = new Thread(srr);

t.start();

//wait until conversation is done
whi | e(srr. get Done())

{

142

try
Thr ead. sl eep(1000) ;

}
catch(I nterruptedException iex)

wite("** ServerRespondRequest InterruptedException.");
}
}

/1 check if this agent has the file, then send back
this.wite("The fileis " + mcontent);

bool ean found = this.findFile((String) mcontent);

i f(found)

ServerReturnFile srf = new ServerReturnFil e(
this, server.getlnet Address().getHostNane(), (String)mcontent);
t = new Thread(srf);

t.start();

// if not found, then ask the group who has it
el se

{
String client = server. getlnet Address(). get Host Nane() ;
ServerMiul ti cast sm = new ServerMil ticast (

this, multicastPort[0], group[0], (String)mgetContent(), client);
t = new Thread(sm;
t.start();
whi | e(sm get Done())
try
Thr ead. sl eep(1000) ;

catch(I nterruptedException iex)

{
wite("** ServerRespondRequest | nterruptedException.");
}
}
}
Y/ end if
el se

wite("** Unrecognized Perfornative - | GNORED ");
E:at ch(d assNot FoundExcepti on cnf ex)
Systemout.printIn("** dass not found exception in " + this.nane);
%:at ch(1 CExcepti on i oex)

Systemout.println("** | CException in " + this.nane);

}
/**
* find the file when receive a nmuulticast conversation
*

/
public void receiveMilticast Conversation(
Mul ti cast Socket nBocket ,
Message m
Vect or mul ticast_queue)

Thread t;

143

if (mperformative.equals("find file"))
{
/1 check if this agent has the file, then send back
I nfoGhj ect info = (InfoChject) mcontent;
bool ean found = this.findFile(info.getFileNane());
i f (found)

ServerReturnFile srf =

new ServerReturnFile(this, info.getdient(), info.getFileNanme());
t = new Thread(srf);

t.start();
el se
wite("** File not found on this agent.");
}
el se
wite("** Unrecognized Performative - | GNORED ");
}
public boolean findFile(String fil eNane)
{

String user_dir = SystemgetProperty ("user.dir");

File file = new File(user_dir);
String all[] = file.list();
bool ean found = fal se;

for(int i=0; i<all.length; i++)
i f(fileNane.equals(all[i]))

found = true;

wite("** The file is found.");
br eak;

}

el se
found = fal se;
return found;

public void run()

bool ean alive = true;
whil e(alive)
{

try

Thr ead. sl eep(1000) ;
catch(I nterruptedException iex)
Systemout.printIn("** Thread Interrupted in " + this.name);
}
}
}
public static void main(String[] args)
Server Agent server = new Server Agent () ;

Thread t = new Thread(server);
t.start();

144

Server M ulticast
package ksu.cis. exanpl e. Fi | eShari ng;
inmport ksu.cis.nom?*;
inmport java.net.*;
inmport java.io.*;
/**
* Multicast conversation initiator. It basically sends the multicast request
* to the group asking to send the file to the client.
*/
public class ServerMilticast extends MilticastConversation
{ private String fil eNane;
private String conversation_nane;
private ServerAgent parent;
private String client;
private bool ean i sbDone = fal se;
public ServerMilticast(
Server Agent a,

int port,
| net Addr ess group,
String req,
String client)
{ super(a, group, port, a.nulticast_queue);
parent = a;
this.fileNane = req;
this.conversation_nane = "ServerMil ticast";

this.client = client;
}
publ i c bool ean get Done()
return isDone;

public void run()

{
Message m = new Message();
int state = 0;
bool ean not Done = true;

try
whi | e (not Done)

switch (state)

{
case O :
m performative = "find file";
I nfoQhj ect info = new InfoQhject(fileNane, client);
mcontent = info;
start Conversation(m conversati on_nanme, "Server");
state = 1;
br eak;
case 1 :
not Done = true;
i sDone = true;
}
}
}
catch (1 OException e)
{
parent.wite("** | O Exception in nulticast conversation.");
}

}
}

145

Server RespondRequest

package ksu.cis.exanpl e. Fil eShari ng;
i mport java.net.*;

i mport Kksu.cis.nom*;

i mport java.io.*;

/**

* Uni cast conversation respondent. It basically accepts the request,
* and send the accept request nessage

* Chairoj Mekprasertvit
*/
public class ServerRRespondRequest extends Conversation

{

private Server Agent parent;
private bool ean i sDone = fal se;

public Server RespondRequest (

Socket s,

bj ect I nput Stream i,

Obj ect Qut put St ream o,

Server Agent a,

Message m)

{
super(s, i, o, a, m;
parent = a;

}

publ i ¢ bool ean get Done()
{

}

public void run()

{

return isDone;

int state = 0;
bool ean not Done = true;
int result = 0;
try
{
whi | e (not Done)

{
switch (state)
{
case 0 :
Message reply = new Message();
reply.setPerformative("reply");
reply. setContent ("accepted");
thi s. sendMessage(reply, output);
state = 1;
br eak;
case 1 :
not Done = fal se;
br eak;

}

i nput.close();

146

out put . cl ose();
connection. cl ose();
i sDhone = true;

catch (UnknownHost Exception e)

{
parent.wite("** Unknown Host exception in Client_Register.");
}
catch (EOFException oef)
{

parent.wite("** Server term nated connection in
Client_Register.");

}
catch (1 OException e)
{
parent.wite("** 10O Exception in Client_Register.");
}

}
}

147

ServerReturnFile
package ksu.cis.exanpl e. Fil eShari ng;

i mport Kksu.cis.nom*;
i mport java.net.*;
i mport java.io.*;

/**
* Uni cast conversation initiator. It basically sends the file back
* to the requesting client using unicast conversation.

* Chai roj Mekprasertvit

*/
public class ServerReturnFile extends Conversation
{

private Server Agent parent;
private String fil eNane;
private String client;

public ServerReturnFil e(
Server Agent agent,
String client,

String file)

super (agent, client, agent.port);
parent = agent;

fileName = file;

this.client = client;
parent.wite("client is " + client);

}

public void run()

{
Message m = new Message();
int state = 0;
bool ean not Done = true;
try
{

parent.wite("ConnectionHost is " + connectionHost);
connection = new Socket (connectionHost, connectionPort);
out put = new Obj ect Qut put St rean{connecti on. get Qut put Strean());
out put. flush();
i nput = new Cbj ect| nput St rean{connecti on. getlnputStrean());
whi | e (not Done)
{
switch (state)
{
case 0 :
m performative = "found file";
Byt eArrayQut put Stream bs = new Byt eArrayQut put Stream();
FilelnputStreamin = new Fil el nput Stream(fil eNamne) ;
int c;
while ((c = in.read()) !'= -1)
bs.write(c);
byte b[] = bs.toByteArray();
I nfoObject info = new I nfoCbject(fil eName, b);
m content = info;

148

thi s. sendMessage(m out put);
state = 1;
br eak;
case 1 :
m = this.readMessage(i nput);
if (mperformative. equal s("ack"))

{

parent.wite("** Client has received the file.");

}

el se
parent. wite("** ERROR - did not
not Done = fal se;
br eak;
}
}
i nput.close();
out put.cl ose();
connection. cl ose();

catch (UnknownHost Exception e)

{
e.toString());
}

parent.wite("** Unknown Host exception in unicast.

catch (EOFException oef)
{

parent.wite(

"** Server term nated connection in unicast.

oef.toString());
}

catch (1 OException e)
{

parent.wite("** 10O Exception in unicast.

}
}
}

149

get reply back **");

"oy

(L

" + e.toString());

Key Digtribution Example

The Key Didribution example congsts of distributor agents who want to distribute

the private key used for encrypting and decrypting multicast message and the client
agents who are waiting to form the multicast group using secured multicast conversation.
The scenario starts by distributor agent sends broadcast message asking for | P address.
The client agents then send back their IP using broadcast conversation. Distributor agent
waits for a gpecific time period before sarts sending the private key using secured unicast

conversaion to the agents that reply back within the time period. After the key is
received, the dlient agents form the multicast group and communicate using secured

multicast conversation based on the received private key.

150

ClientAgent
package ksu. ci s. exanpl e. KeyDi stri buti on;
i mport java.io.*;
i nport java.net.*;
i nport java.security.*;
i nport javax. net.ssl.*;
i mport Ksu.cis.nmom*;
import java.util.*;
public class dientAgent extends Agent

{
public static final int unicastPort = 3000;
public static final int secureUnicastPort = 3001;
public static final int nulticastPort[] = {3002, 3003};
public static final int broadcastPort = 3004;

public static final int secureMulticastPort[] = {3005, 3006};
private dient Agent QU qui;
private Key key;
private String algorithm
private SecureMul ticastHandl er snh;
public dientAgent(String name, String broadcast Address, dientAgentGJ gui)
{ super (
nane,
uni cast Port,
mul ti castPort,
br oadcast Port,
secur eUni cast Port
secureMil ticast Port);
this.gui = gui;
try
{

super. group = new | net Address[5];

super. group[0] = I net Address. get ByNanme("239. 255. 10. 11");

super. group[1] = | net Address. get ByNane("239. 255. 10. 12");

super . br oadcast _address = | net Addr ess. get ByNane(br oadcast Addr ess) ;

catch (Throwabl e e)

wite("lInvalid Internet Address");

}
Br oadcast Handl er bh =
new Broadcast Handl er (thi s, broadcastPort, broadcast_address);

bh.start();

Secur eUni cast Handl er suh =
new Secur eUni cast Handl er (secur eUni cast Port, this);
suh.start();

%ublic voi d recei veMessage(
Socket server,
Coj ect | nput Stream i nput,
(oj ect Qut put St ream out put)

{

public void recei veBroadcast Conver sat i on(
Dat agr anSocket bSocket
Message m
Vect or broadcast _queue)

Thread t;
if (mperformative.equal s("register"))

{

151

t = new Thread(new d i ent Ret ur nRegi st er (bSocket, broadcast_queue,

broadcastPort, m gui));
t.start();
}

public void receiveSecureMilticast Conversati on(
Mul ti cast Socket nBSocket,

Message m
Vect or mul ti cast_queue,
Key Kk,

String al gorithm

Systemout.printin("receive multicast " + (String)mcontent);

gui .setDisplay((String)mcontent);

public void recei veSecur eUni cast Conver sati on(
SSLSocket server,
Qoj ect | nput Stream i nput,
Chj ect Qut put St ream out put)

Message m
Thread t;

try

m = (Message) input.readject();

if (mperformative. equal s(" Get Key"))

{
this.key = (Key) mcontent;
this.algorithm= key.getAl gorithn();

gui . setDisplay("** Agent has received the secrect key."

gui .setDisplay("** Key using: " + key.getA gorithm());
t = new Thread(new O i ent Get Key(server, input, output,
t.start();

smh = new Secur eMul ti cast Handl er (

this, secureMilticastPort[1], 1, group[l], key, "DES");

smh.start();
}

}
catch (Cd assNot FoundExcepti on cnf ex)
wite("** Error class not found in " + this.nane);
}
catch (1 OException ex)

wite("** Error read unicast input in "+ this.nane);

) }
public void sendSecuredMul ticast(String m

Thread init;
init = new Thread(new SecureMil ti cast Send(

this, secureMiulticastPort[1], group[1l], m gui, key, algorithny);

init.start();
public void run()

bool ean alive = true;
gui . setDi splay("** Agent Run.");
whi l e(alive)
{1
}

152

this,

ClientAgentGUI
package ksu. ci s. exanpl e. KeyDi stri buti on;
inmport java.aw.*;
inmport java.aw.event.*;

public class dientAgent QJ extends Frame
{ private TextField field;
private TextArea display;
private dientAgent agent;
public dientAgentGJ (String nanme, String broadcast Address)
{ super ("Please Wait...");
set Layout (new BorderLayout());
field = new TextFi el d();
di splay = new Text Area();
add(di splay, "Center");
di spl ay. set Backgr ound(Col or. whi te);
di spl ay. set For egr ound(Col or. bl ack) ;
add(field, "South");
set Si ze(300, 200);
set Vi si bl e(true);

show() ;

agent = new d i ent Agent (name, broadcast Address, this);
Thread t = new Thread(agent);

t.start();

[/create field for outgoing secured nulticast nmessage.
fiel d. set Enabl ed(fal se);

fiel d. addActi onLi st ener

(

new Acti onLi st ener ()
public void actionPerformed(ActionEvent e)

set Di spl ay(e. get Acti onCommand());
agent . sendSecur edMul ti cast (e. get Acti onCommand());
}

}
)

public void startU ()
field. set Enabl ed(true);
setTitle("Demo I11: " + agent.nane);
setDisplay("** dient started.");

}

public void setField()

field. set Enabl ed(true);
}

public void setD splay(String m

di spl ay. append(m + "\ n");
}

public static void main(String[] args)
if(args.length = 2)
{
Systemout. println("Usage: java dient Agent GJ <nanme> <broadcast

addr ess>");
Systemexit(1);

153

}
String name = args[0];
String broadcast Address = args[1];

CientAgent QU gui = new dientAgent QU (nane, broadcast Address);
gui . addW ndowLi st ener

new W ndowAdapt er ()

public void wi ndowd osi ng(W ndowEvent e)
{

}
}

)
gui.startU ();
}/ 1 end of nain nethod
}//end of class agent_interface

Systemexit(0);

154

ClientGetK ey
package ksu. ci s. exanpl e. KeyDi stri buti on;
i mport Kksu.cis.nmom*;
import java.io.*;
i nport javax. net.ssl.*;

public class dientGetKey extends SecureUni cast Conversation
{ public dientAgent parent;

public dient Get Key(

SSLSocket s,

Coj ect I nput Stream i,

Coj ect Qut put St ream o,

dient Agent a,

Message m

{ super(s, i, o, a, mM;

parent = a;

}

public void run()

int state = 0;
bool ean not Done = true;
try

whi | e (not Done)
switch (state)

case 0 :
Message reply = new Message();
reply.setPerformative("ack");
sendMessage(reply, output);

not Done = fal se;
state = 1;
br eak;

}

i nput. cl ose();
out put . cl ose();
connecti on. cl ose();

}
catch (ECFException eof)
{

parent.wite("** Server termi nated connection in SSL.");

catch (1 OException e)
{

}
}
}

parent.wite("** | O Exception in SSL.");

155

ClientReturnRegister

package ksu. ci s. exanpl e. KeyDi stri buti on;

inmport ksu.cis.nom?*;
inport java.net.*;
inmport java.io.*;
inmport java.util.*;

/**

* Chairoj Mekprasertvit

*

*/
public class dientReturnRegi ster extends Broadcast Conversation
{

private dient Agent parent;

private dient Agent QU qui;

private String conversation_name = "dientReturnRegister";
public dientReturnRegister(

Dat agr anSocket dSocket,

Vect or queue,

Cient Agent a,

int b_port,

Message m

Cient Agent GU gui)

super (a, a.broadcast_address, b_port, queue, nj;
this.gui = gui;

this. dSocket = dSocket ;

parent = a;

/**
* <p>Run nethod. Broadcast |P address of itself when received broadcast
request
* to register.
* j ava. | ang. Runnabl e#run()
*/
public void run()

bool ean not Done = true;
I net Address ip = null;
int state = 0;
int result = 0;

whi | e(not Done)

switch(state)

{

case O:
try

{
i p = I net Addr ess. get Local Host () ;

Systemout . println(ip.getHost Address());
state = 1;

}
cat ch(UnknownHost Excepti on e)

{
Systemout. println("** Unknowhost Exception in
dient ReturnRegister.");

br eak;

case 1:
Message regi ster = new Message();

156

regi ster.setPerformative("register");
regi ster.setContent ((Chject)ip);
try

sendMessage(regi ster, conversation_nane,
"Di stribut or Request Regi ster™);
gui . setDisplay("** Agent sends register IP. " +
i p. get Host Address());
Systemout.println("** Agent sends register IP: " + ip.toString());

catch (1 COException ioex)
{

parent.wite(ioex.toString());

not Done = fal se;
br eak;
}// end switch
Y/ 1 end while
}/ 1 end run nethod
}// end class

157

Distributor Agent

package ksu. ci s. exanpl e. KeyDi stri buti on;

import java.io.*;

i nport java.net.*;

i nport java.security.*;
i mport javax. net.ssl.*;
i nport javax.crypto.*;
i mport ksu.cis.nmom*;

inmport java.util.*;

public class D stributorAgent extends Agent

{
public static final int unicastPort = 3000;
public static final int secureUnicastPort = 3001;
public static final int nulticastPort[] = {3002, 3003};
public static final int broadcastPort = 3004;

public static final int secureMilticastPort[] = {3005, 3006};
private Vector clientlList;

private DistributorAgentGJ gqui;

private Key key;

private String algorithm

private bool ean alive;

private bool ean fini shRegister;

public DistributorAgent (
String nane,
String broadcast Address,
Di stributorAgent QU gui)
{
super (
nane,
uni cast Port,
mul ticastPort,
br oadcast Port,
secur eUni cast Port,
secureMil ticastPort);
this.gui = gui;
this.alive = true;
this.clientList = new Vector(10);
this.finishRegister = fal se;

try
{

super. group = new | net Addr ess[5] ;
super. group[0] = | net Address. get ByNanme("239. 255. 10. 11");

super . br oadcast _address = | net Addr ess. get ByName(br oadcast Addr ess) ;

al gorithm = "DES";
key = KeyGenerator.getlnstance(al gorithn). generateKey();

catch (Throwabl e e)

wite("lInvalid Internet Address");

}

MessageHandl er h = new MessageHand! er (uni castPort, this);
h.start();

Mul ticastHandl er nmh =

new Mul ticastHandler(this, nmulticastPort[0], 1, group[0]);
mh. start();

158

Br oadcast Handl er bh =
new Broadcast Handl er (thi s, broadcastPort, broadcast_address);
bh.start();

}

public void recei veMessage(
Socket server,
Qoj ect | nput Stream i nput,
Chj ect Qut put St ream out put)
{

}
public void addToLi st (I net Address ip)

this.clientList.addEl enent(ip);
}

public void setFini shRegi ster(bool ean bool)

this. finishRegister = bool;
}

/**
* j ava. | ang. Runnabl e#r un()
*/
public void run()
t
int state = 0;
Thread init = new Thread();
whil e(alive)

switch(state)

{

case O:

gui .setDisplay("** D stributor sends Broadcast");
init = new Thread(new D stri but or Request Regi ster(this, broadcastPort,

br oadcast _address, gui));

init.start();
state = 1,
br eak;
case 1:
try

Thr ead. sl eep(10000) ;
i f(finishRegister == true)

state = 2;
el se
state = 1;

catch(I nterruptedException e)
{

Systemout.println(e.toString());
}

br eak;
case 2:
for(int i=0; i<clientList.size(); i++)

gui .setDisplay("** D stributor sends secured unicast to all agents
inthe list");

init = new Thread(new D stri but or SendKey(

this, (InetAddress)clientList.elenmentAt(i), secure_unicast_port,

key, gui));

159

init.start();
gui .setDisplay("** Sending key to " +
clientList.elenentAt(i).toString());
}
state = 3;
br eak;
case 3:
try
{

gui . setDisplay("** Agent go to sleep before exit.");
Thr ead. sl eep(10000) ;
i f(finishRegister == true)
Systemexit(0);
el se
state = 3;
/] Systemexit(0);

cat ch(I nterrupt edException e)

Systemout.println(e.toString());

br eak;

160

Digributor AgentGUI
package ksu. ci s. exanpl e. KeyDi stri buti on;
i nport java.awt.*;
i mport java.aw .event.*;

public class D stributorAgent GQJ extends Frane

{
private TextArea display;

private DistributorAgent agent;
public DistributorAgentGJ (String nane, String broadcast Address)
{ super ("Please Wait...");

set Layout (new BorderLayout());

di splay = new Text Area();

add(di splay, "Center");

di spl ay. set Backgr ound(Col or. white);

di spl ay. set For egr ound(Col or. bl ack) ;

set Si ze(300, 200);

set Vi si bl e(true);

show() ;

agent = new Di stri but or Agent (nanme, broadcast Address, this);
Thread t = new Thread(agent);
t.start();

public void startUl ()

{
setTitle("Demo I11: " + agent.nane);
}
public void setDi splay(String m
{

di spl ay. append(m + "\n");
Systemout. println(m;
}

public static void main(String[] args)
if(args.length I'= 2)

Systemout. println("Usage: java D stributorAgent GJ <nane> <broadcast
addr ess>");
Systemexit(1);
}

String name = args[O0];

String broadcast Address = args[1];

Di stributorAgent GQJ gui = new DistributorAgent GJ (name, broadcast Address);
gui . addW ndowLi st ener

new W ndowAdapt er ()

public void wi ndowd osi ng(W ndowEvent e)
{
Systemexit(0);
}
}
)i
gui.startU ();
}/1 end of nain nethod

161

Distributor RequestRegister

package ksu. ci s. exanpl e. KeyDi stri buti on;
inmport ksu.cis.nom?*;

inmport java.net.*;

inmport java.io.*;

public class D stributorRequest Regi ster extends Broadcast Conversati on

{

private DistributorAgent parent;
private String conversation_nang;
private DistributorAgentGJ gqui;

public DistributorRequest Regi ster (
Di stri but or Agent agent,

int b_port,

I net Addr ess br oadcast _addr ess,

Di stributorAgent QU gui)

{

super (agent, broadcast _address, b_port, agent.broadcast_queue);
this.parent = agent;

t hi s. conversation_nane = "D stributor Request Regi ster™";

this.gui = gui;

public void run()

{

Message m = new Message();

int state

O.

bool ean not Done = true;
int count = 0O;

try

whi | e(not Done)

swi tch(state)

case O:
m perfornmative = "register";

start Conversation(m conversation_name, "dientReturnRegister");

state = 1;
br eak;
case 1:
try
{
gui .setDisplay("** Agent will wait for reply for 5000

mllisec.");

Thr ead. sl eep(5000) ;
gui .setDisplay("** 5000 nilisec is over.");

catch(I nterruptedException e)
{
Systemout.printin(e.toString());
}
state = 3;
br eak;
case 3:

do

{
m = nonbl ockedReadMessage(" Di st ri but or Request Regi ster”,
i f(mcontent.equal s("timeout"))

{
parent.wite("TI MEQUT BROADCAST");

br eak;

}

162

1000) ;

if(mperformative. equal s("register"))
{
par ent . addToLi st ((1 net Address) mcontent);
this.gui.setDisplay("IP: " + mcontent.toString() + " is being
regi stered.");

}

whil e(! m content. equal s("tinmeout"));
not Done = fal se;
parent . set Fi ni shRegi ster(true);
br eak;
}
}

}
catch(1 OException e)

{

parent.wite("** | O Exception in DistributorRegi sterRequest
conversation.");

}

}
}

163

Distributor SendK ey

package ksu. ci s. exanpl e. KeyDi stri buti on;

i mport Ksu.cis.nmom*;

i nport javax. net.ssl.*;
i nport java.net.*;

i mport java.security.*;
import java.io.*;

public class D stributorSendKey extends SecureUni cast Conversation
{ private DistributorAgent parent;
private Key key;
private DistributorAgentGJ gui;
public DistributorSendKey(
Di stri but or Agent agent,
| net Addr ess i p,
int su_port,
Key key,
Di stributorAgent QU gui)

super (agent, ip.getHost Address(), su_port);
parent = agent;
this. key = key;
this.gui = gui;
}

public void run()

{

Message m = new Message();
int state = 0;
bool ean not Done = true;

try

SSLSocket Factory ssl Fact =
(SSLSocket Fact ory) SSLSocket Factory. getDefaul t();
connection = (SSLSocket) ssl Fact. createSocket (connecti onHost,

connectionPort);
out put = new (bj ect Qut put St ream(connecti on. get Qut put Strean());

i nput = new Obj ect | nput St rean{connection. getl nput Stream));

out put . flush();
whi | e(not Done)

switch(state)
{
case O:
m performative = "Get Key";
m content = key;
sendMessage(m output);
gui . set Di spl ay(
"Distributor sent key to " +
connecti on. get | net Addr ess() . get Host Name()) ;
state = 1,
br eak;
case 1:
m = readMessage(i nput);
i f(mperformative. equal s("ack"))
{ gui . setDi spl ay(m sender + " has received the key.");
not Done = fal se;
}
el se
parent.wite("** Error - did not get reply back.");

164

br eak;

}
}
i nput. close();
out put . cl ose();
connecti on. cl ose();

}
catch (EOFException oef)
{

parent.wite("** Server term nated connection in D stributorSendKey.");

}
catch (1 OException e)
{

}

}/ 1 end run nethod
}// end class DistributorSendKey

parent.wite("** 10 Exception in D stributorSendKey.");

165

Secur eM ulticastSend

package ksu. ci s. exanpl e. KeyDi stri buti on;

inmport java.net.*;
inmport java.io.*;
inmport java.security.?*;
inmport ksu.cis.nom?*;

public class SecureMul ticastSend extends SecureMul ticast Conversation
{

private dient Agent parent;

private dient Agent GU qui;

private String nesg;

private String conversati on_name = "SecureMilticast Send";

public SecureMilticast Send(

Cient Agent a,

int port,

| net Addr ess group,

String m

Cient Agent GJ qui,

Key k,

String al gorithm

{ super(a, group, port, a.secure_nulticast_queue, k, algorithm;
parent = a;
this.gui = gui;
this.mesg = m

}

public void run()

Message m = new Message();

int state = 0;
bool ean not Done = true;
try

whi | e(not Done)

switch(state)
{
case O:
m performative = "display";
m content = this.nesg;
start Conversation(m conversation_name, "SecureMilticastReceive");
state = 1;
br eak;
case 1:
not Done = fal se;
br eak;

}
}

}
catch (1 OException e)
{

parent.wite("** 10 Exception in secured nulticast conversation.");
}
}
}

166

