
APPLYING BROADCASTING/MULTICASTING/SECURED
COMMUNICATION TO AGENTMOM IN MULTIAGENT-SYSTEMS

by

CHAIROJ MEKPRASERTVIT

B.A., Thammasat University, Thailand, 1997
B.S., Pittsburg State University, 2000

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SOFTWARE ENGINEERING

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2004

Approved by:

Major Professor
Dr. Scott A DeLoach

 i

ABSTRACT

agentMom is a framework for building multi-agent systems. The previous version

of agentMom supports only the one-to-one communication using TCP/IP. The goal of

this project is to integrate the broadcast, multicast and secured communication to

agentMom. The new security features used in agentMom are Secure Socket Layers in

one-to-one communication and Symmetric Key Algorithm in multicast communication.

The entire project was implemented in java version 1.4. The total time spent in this

project was 700 hours with 2200 source line of code, approximately.

 ii

TABLE OF CONTENTS

TABLE OF CONTENTS ……………………………………………………………….. ii

LIST OF FIGURES ………………………………………….. iii

CHAPTER 1 – PROJECT OVERVIEW………………………………………………… 1

CHAPTER 2 – SOFTWARE REQUIREMENTS SPECIFICATION ………………….. 6

CHAPTER 3 – PROJECT PLAN…………………………………. 12

CHAPTER 4 – SOFTWARE QUALITY ASSURANCE PLAN.................…………… 16

CHAPTER 5 – ARCHITECTURE DESIGN………………………….. 20

CHAPTER 6 – FORMAL REQUIREMENT SPECIFICATION……………………… 32

CHAPTER 7 – IMPLEMENTATION PLAN………………………………………….. 38

CHAPTER 8 – FORMAL INSPECTION……………………………………………… 42

CHAPTER 9 – TEST PLAN……………………………………. 48

CHAPTER 10 – COMPONENT DESIGN .. 54

CHAPTER 11 – ASSESSMENT EVALUATION .. 98

CHAPTER 12 – USER’S MANUAL .. 101

CHAPTER 13 – PROJECT EVALUATION .. 167

REFERENCES .. 173

 iii

LIST OF FIGURES

Figure 1 – agentMom ... 2

Figure 2 – agentMom’s architecture .. 3

Figure 3 – use case: leave/join ... 8

Figure 4 – use case: unicast ... 9

Figure 5 – use case: multicast .. 9

Figure 6 – use case: broadcast ... 10

Figure 7 – Class diagram: agentMom 1.2 .. 21

Figure 8 – Architecture design ... 22

Figure 9 – Nine new classes in agentMom .. 24

Figure 10 – Sequence diagram: starting unicast conversation ... 27

Figure 11 – Sequence diagram: join multicast group .. 28

Figure 12 – Sequence diagram: multicast conversation .. 29

Figure 13 – Sequence diagram: leave multicast group .. 30

Figure 14 – Sequence diagram: broadcast conversation .. 31

Figure 15 – Class diagram: new agentMom .. 54

Figure 16 – State chart: BroadcastHandler .. 64

Figure 17 – State chart: MessageHandler .. 69

Figure 18 – State chart: MulticastHandler ... 82

Figure 19 – new agentMom ... 101

Figure 20 – Class diagram: new agentMom .. 102

Figure 21 – new agentMom's architecture ... 103

Figure 22 – Phase I Break down .. 171

Figure 23 – Phase II Break down ... 171

Figure 24 – Phase III Break down ... 172

Figure 25 – Project Break down .. 172

 1

CHAPTER 1 – PROJECT OVERVIEW

1. Background
1.1 Motivation
 Communication is one of the critical parts in multi-agent systems because it enables
the agents in multi-agent systems to exchange information and cooperate with each other.
This raises the question of what communication technique to be used in multi-agent
systems. An earlier implementation of agentMom developed by Dr. Scott A. DeLoach,
allows only one-to-one communication using the TCP/IP protocol. However, in the
situation where a single message is destined for many recipients, multiple copies of the
same message have to be sent by using TCP/IP protocol. This is not very efficient when
there are a large number of agents in the system. Broadcast/Multicast communication on
the other hand prevents network overloading by generating a single message destined for
multiple recipients. This technique also reduces the amount of conversations that an agent
has to handle. Depending on the situations, an agent may choose to unicast over
broadcast/multicast messages. For example, unicast message is more appropriate when
there are very few recipients. Thus, by integrating broadcast/multicast communication
capability, agentMom can provide a more flexible way for an agent to communicate with
other agents

1.2 Multi-Agent Systems
 Multi-Agent Systems are one of the most recent contributions in the field of software
engineering in building distributed intelligent systems. It is described as a further
abstraction of the object-oriented paradigm where agents are a specialization of objects.
Agents are similar to objects; however, they have traits such as autonomy, cooperation,
perception, and pro-activeness that imply characteristics that objects generally do not
have. Basically, there are two differences:

1. Objects are passive. They react to external stimuli, but do not exhibit goal
directed behavior.

2. Agents typically use a common messaging language between all agents whereas
object messages are usually class dependent.

 Therefore, an object is a logical combination of data structures and its corresponding
methods while agents additionally support structures for representing mental state
components such as attitudes, beliefs and goals.

1.3 Example of software agents
 There are wide ranges of application domains that are making use of agent-oriented
systems engineering. Software agents are being developed for fields as varied as
entertainment, electronic commerce, user assistance, and information systems.
 For example,

1. The animated paperclip agent in Microsoft Office
2. Computer viruses (destructive agents)
3. Artificial players or actors in computer games and simulations (e.g. Quake)
4. Trading and negotiation agents (e.g. the auction agent at Ebay)
5. Web spiders (collecting data to build indexes to used by a search engine, i.e.

Google)

 2

1.4 agentMom
 Agents in Multi-Agent systems environment have to communicate with other agents
to be able to cooperate and achieve the assigned goals. However, it is not an easy task for
developers to manage all communications.
 agentMom is a communication framework for multi-agent systems implemented in
Java. It provides a framework for building agents, conversations between agents and
messages passed in the conversations. Currently in agentMom version 1.2, it consists of
four important classes: Agent, Conversation, Message and MessageHandler. The Agent
class is an abstract class that defines the minimum set of requirements for an agent to use
agentMom. The Conversation class is an abstract class that is basically used for sending
and receiving message using the TCP/IP protocol. The Message class defines the field
used in the message passing between agents such as host, port, sender and receiver. The
The MessageHandler class is used to start a socket on the indicated port and wait for
connection from another agent. Basically, it monitors the local port for establishing
connection.

Figure 1. agentMom

 An overview of how agentMom works is shown in Figure 1. When an agent wants to
start a conversation with other agents, that agent starts the MessageHandler that opens the
indicated port, and then waits for the connection to establish with the other agent’s
MessageHandler. An agent can start the conversation by establishing socket connection
with another agent’s MessageHandler. When connection has been established and the
initial message has been validated, they can then start sending and receiving messages.

 3

a. Agent directly controls conversations b. Component controls conversations

Figure 2. agentMom’s architectures

Furthermore, there are two architectures that can be applied to agentMom. The
first architecture is shown in Figure 2a. In the first architecture, agent directly controls the
conversations. This architecture is very straightforward since conversations belong to
agent. In the second architecture as shown in Figure 2b, an agent consists of one or more
components, and the conversations belong to components, not directly to agents. Also, an
agent can have multiple components and components can have multiple conversation.
The difference from the first architecture is that component is responsible for making
conversation with other agents. In the first architecture, agents are directly responsible for
controlling the conversation. Having components separately from agent allows
developers to map the agent role’s tasks to the component. From now, we will refer to the
first architecture as agent-based architecture and the second architecture as component-
based architecture.
 In this project, we will consider these two architectures in applying multicast,
broadcast and security into agentMom.

2. Project Overview
2.1 Terms and Definitions
Unicast refers to one-to-one communication in such a way that a packet originates from a
single Internet host, and it is destined to a unique location of another Internet host.
Multicast refers to one-to-many communication in such a way that a packet originates
from a single Internet host, and it is destined to multiple receivers within the same
multicast address.
Broadcast refers to one-to-many communication in such a way that a packet originates
from a single Internet host, and it is destined to all receivers within the same local
network.
Organization refers to a set of agents.
Institution refers to a set of the basic element required to build a particular type of
organization consisting of goals, roles, rules and protocols.

agent

conversation component conversation component

agent

conversation conversation

 4

Reorganization refers to a situation where the previous organization structure is not
efficient to succeed the mission.
Group refers to a set of agents who agree to use the same multicast address to subscribe
group message.
Time-To-Live (TTL) refers to the number of hops that multicast message is allowed to
remain in the network before it is discarded by the router.

2.2 Overview
 This MSE project is part of the research project “Autonomous Reorganization of
Cooperative Robotic Teams for Robust Performance” supervised by Dr. Scott DeLoach.
The main focus of this research is to provide autonomous cooperative robotic teams with
enough knowledge of their team goals and organizational structure to allow them to
autonomously organize and reorganize to achieve their team goal in the face of changing
environmental conditions and individual team member failures.
 The main focus of this MSE project is on extending agentMom capability to manage
unicast, multicast and broadcast communication and to provide secured communication
such as message encryption and decryption. Currently, agentMom1.2 only supports
unicast communication without multicast broadcast and security. There are many
advantages in using broadcast/multicast communication in multi-agent systems
environment. First of all, when there are many agents in the system and the use of
network bandwidth is critical, then sending multiple copies of the same message to each
receiving agent may not desirable. Broadcast or multicast communication can save
network bandwidth by sending a single message destined for multiple receiving agents.
Secondly, when an agent has to send the same message to hundreds of agent, then this
agent may not be able to do anything else, but sending and receiving messages. Broadcast
and multicast techniques can reduce agent’s workload. Furthermore, in the situation
where the sender does not know the address of all agents in the system, sender can
choose to multicast or broadcast the message to find agents on service. In the
bidding/marketing-based technique, agents may broadcast or multicast messages to other
agents for some services. The recipients of these messages evaluate those requests, and
then submit bids with directed message to the originating agents. The originating agents
use this information to choose the appropriate agent to do the jobs, and then send directed
message back to the desired agents. Lastly, there are many situations that need to divide
agents into different groups such as search group and rescue group. Agents may want to
receive messages only from the group they belong to. Multicast communication supports
this implementation.
 In a multi-agent system, security is also an important issue when message is sent over
a public network such as Internet. It is undesirable if someone who is not specified to
receive message can see the content of it. Message encryption can prevent this situation.
 Therefore, integrating broadcast/multicast communication and security features to
agentMom can provide a more flexible way for communication in multi-agent systems.

2.3 Goal
 Integrate multicasting, broadcasting and secured communication capability in
agentMom in order to provide more efficient and effective way for communication in
multi-agent environment.

 5

2.4 Purpose

1. Enable agents to broadcast a message to all the agents within the same local
network.

2. Enable agents to multicast a message to all the agents within the same multicast
address.

3. Allow agents to choose among unicast, multicast and broadcast communication.
4. Allow agents to join and leave multicast group
5. Reduce network bandwidth from multiple copies of the same message by using

multicast and broadcast communication.
6. Reduce agent’s workload by reducing the number of sending and receiving

messages.
7. Provide message encryption and decryption techniques.

2.5 Feature

1. Support unicast, multicast and broadcast communication.
2. Allow agent to choose which communication method to be used

(unicast/multicast/broadcast) to fit the needs.
3. Allow agent to join and leave multicast group.
4. Allow agent to choose to encrypt or not to encrypt message.

2.6 Risk

1. Reliable message delivery – multicast/broadcast packets are delivered with best
effort. Thus, a packet may be delivered to all specified agents or none.

2. Security – we provide some basic mechanisms for security such as message
encryption. However, there is no guarantee that the others cannot decrypt the
encrypted messages.

2.7 Direction

1. Reliable message delivery – scalable reliable message delivery is an important
issue in multicast and broadcast communication. It is a hot research area in
communication network and there is no single solution to this problem. Thus, this
can be further in the future work.

2. FIPA Agent Communication Language (ACL) – this project can be further to
conform to FIPA ACL specification, including FIPA ACL messages represented
in XML.

2.8 Environment
1. This software package will be compiled using Java 1.4.2.
2. Rational Rose 2000 will be used for creating various object diagrams..
3. Eclipse IDE 2.1 will be used for coding the software package.
4. This software package will be tested under Microsoft Windows XP/2000, Linux

Debian Linux and Solaris 9.
5. USE 2.0 will be used for modeling the formal specifications, using UML/OCL

methodology.

 6

CHAPTER 2 – SOFTWARE REQUIREMENTS SPECIFICATION

1 Introduction
 This section provides an overview of this project.

1.1 Purpose
 The purpose of this document is to describe functionality and behavior of the new
agentMom framework. This document is intended to be viewed only by project advisor
and committee members.

1.2 Scope
 This document covers the software requirements for the project “Applying
Broadcasting/Multicasting/Secured Communication to agentMom in Multi-Agent
Systems”.

1.3 Definitions, Acronym & Abbreviations
agentMom 1.2 refers to current implementation of agentMom
New agentMom refers to this project, including agentMom with capability of
broadcasting, multicasting and secured communication
Unicast refers to one-to-one communication in such a way that a packet originates from a
single Internet host, and it is destined to a unique location of another Internet host.
Multicast refers to one-to-many communication in such a way that a packet originates
from a single Internet host, and it is destined to multiple receivers within the same
multicast address.
Broadcast refers to one-to-many communication in such a way that a packet originates
from a single Internet host, and it is destined to all receivers within the same local
network.
Organization refers to a set of agents.
Reorganization refers to a situation where the previous organization structure is not
efficient to succeed the mission.
Group refers to a set of agents who agree to use the same multicast address to subscribe
group message.
Time-To-Live (TTL) refers to the number of hops that multicast message is allowed to
remain in the network before it is discarded by the router.

1.4 Overview
 The remainder of this document provides a greater detail functionality and
requirement of the software. Section 2 describes product perspective, overall
functionality, intended users, constraints and assumption of this software. Section 3
provides general Use Cases and specific requirement of this software.

2 Overall Description
 This section provides an overview of the project functionality and factors that affect
this project and its requirements.

 7

2.1 Product Perspective
 This project will be a framework that provides reusability of agent’s communication.
It is implemented in Java and provides the basic building blocks for building agents,
conversations between agents, and the message that are passed in the conversations.

2.1.1 Software Interface – java version 1.4.0 is required to use the software.
2.1.2 Communication Interface – TCP/IP is used in order to send unicast message.

Multicast protocol is used in order to send multicast message. UDP is used in
order to send broadcast message.

2.2 Product Functions

2.2.1 Enable agents to broadcast a message to all the agents within the same local
network.

2.2.2 Enable agents to multicast a message to all the agents within the same
multicast address.

2.2.3 Enable agents to unicast a message to other agents within organization.
2.2.4 Allow agents to choose among unicast, multicast and broadcast

communication.
2.2.5 Allow agents to join and leave multicast group.
2.2.6 Provide message encryption and decryption techniques for secured

communication.
2.2.7 Allow agents to choose to encrypt or not to encrypt message.

2.3 User Characteristics
 Users who want to implement multi-agent systems based on this framework are
expected to have general knowledge of Java programming, object-oriented programming
and Multi-Agent Systems Engineering Methodology.

2.4 Constraints

2.4.1 Reliable message delivery – multicast/broadcast packets are delivered with
best effort. Thus, a packet may be delivered to all specified agents or none.

2.4.2 Security – we provide some basic mechanisms for security such as message
encryption. However, there is no guarantee that the others cannot decrypt the
encrypted messages.

2.4.3 Multicast Protocol – in order to send multicast message, network environment
such as router, network card and operating systems must support multicast
protocol.

2.4.4 Broadcast Message – in many network, only system administrator is allowed
to send broadcast message.

2.5 Assumptions and Dependencies

2.5.1 We assume that each agent knows the address of destinating agents in order to
send unicast message.

2.5.2 We assume that each agent has enough knowledge to decide the best way to
communicate with the other agents.

2.5.3 In the case of using secured multicast communication, we assume that there is
an agent whom each agent can request for the same encryption and decryption

 8

key. This agent should maintain a list of agents who are allowed to get the
keys.

2.5.4 We assume that each agent knows the multicast address in order to send
multicast message.

3 Specific Requirements
 This section provides all of the project requirements in detail.

3.1 Use cases
Use Case 1: Notify join/leave multicast group

Transmit_leave

Agent_A

Agent_B

Agent_D

Encrypt Mesg

Transmit_join

Decrypt Mesg

Figure 3. leave/join

1. Message is encrypted or Message is not encrypted.
2. An agent sends notify to join/leave multicast group.
3. Message is decrypted only if Message is encrypted.

 For example, Agent_B and Agent_D belong to the same group, and then Agent_B
wants to leave the group and Agent_A wants to join the group. In this situation, when
reorganization occurs, Agent_A who is previously not part of the group may send notify
message to join the group, and Agent_B who is previously part of the group, may send
notify message to leave the group. For instance, Agent_B suffers a failure in one of its
capabilities and does not want to receive any further message from the group. Agent_A
who may have capability to substitute Agent_B is needed to be part of the group. This
involves sending notify of join and leave the group.

Use Case 2: Send/Receive Unicast

 9

Agent_A Agent_B

Decrypt_Mesg

Transmit_Message

Encrypt_Mesg

Figure 4. unicast

1. Message is encrypted or Message is not encrypted.
2. An agent sends unicast message to another agent.
3. Another agent receives message.
4. Message is decrypted only if Message is encrypted.
In this situation, Agent_A wants to communicate with Agent_B. This direct

communication can happen between any two agents within organization.

Use Case 3: Send/Receive Multicast

Agent_A

Encrypt_Mesg Decrypt_Mesg

Agent_C

Agent_B
Transmit_Multicast

Figure 5. multicast

1. Message is encrypted or Message is not encrypted.
2. An agent sends multicast message to the group (multicast address).
3. Other agents in the group receive message.
4. Message is decrypted only if Message is encrypted

 10

In this situation, Agent_A wants to send a message to everyone within the group,
assuming that Agent_A, Agent_B and Agent_C subscribe to the same multicast address.
This involves the multicast communication since other agents who do not belong to the
group cannot receive this message. For instance, an agent may want to inform everyone
in the group when the assigned tasks are completed. This is more effective than in unicast
communication since only one copy is sent. Also, using bidding/market-based protocols
fit well with this kind of communication. An agent may request a bid from other agents
for doing some tasks.

Use Case 4: Send/Receive Broadcast

Agent_A

Agent_C

Agent_B
Transmit_Broadcast

Figure 6. broadcast

1. An agent sends message to everyone in the same local network
2. Other agent in the same local network receive message
In this situation, Agent_A wants to send a message to everyone within the same local

network that agent A belongs to. This involves the broadcast communication since any
agent in the same local network as Agent_A can receive this message. For instance, when
a new agent who does not previously exist in that local network wants to announce the
existence to other agents.

3.2 Specific Requirement
 3.2.1 Unicast Communication
 3.2.1.1 *agentMom shall support the ability to send unicast message.

3.2.1.2 *agentMom shall support the ability to receive unicast message.
3.2.1.3 Unicast message shall only be received by the specified address.
3.2.1.4 Unicast message shall arrive at the specified address and in order.

3.2.2 Multicast Communication
3.2.2.1 *agentMom shall support the ability to send multicast message.
3.2.2.2 *agentMom shall support the ability to receive multicast message.
3.2.2.3 *agentMom shall support the ability to send request to join multicast

group.

 11

3.2.2.4 *agentMom shall support the ability to send request to leave multicast
group.

3.2.2.5 agentMom shall not allow receiving multicast message from a group
before joining that multicast group.

3.2.2.6 agentMom shall not allow receiving multicast message from a group after
leaving that multicast group.

3.2.2.7 agentMom shall support the ability to set time-to-live for multicast
message.

3.2.2.8 agentMom shall support the ability to set multicast address and port for
sending and receiving multicast message.

3.2.2.9 agentMom shall support the ability to receive multicast message from
multiple groups.

3.2.3 Broadcast Communication
3.2.3.1 *agentMom shall support the ability to sent broadcast message.
3.2.3.2 *agentMom shall support the ability to receive broadcast message.
3.3.3.3 *Broadcast message shall be sent to all possible hosts under the same local

network.
3.2.4 Security

3.2.4.1 *agentMom shall support the ability to encrypt unicast message.
3.2.4.2 *agentMom shall support the ability to decrypt unicast message.
3.2.4.3 agentMom shall allow an agent to decide whether or not to encrypt a

message.
3.2.4.4 agentMom shall automatically decrypt encrypted message.
3.2.4.5 agentMom shall support the ability to encrypt multicast message.
3.2.4.6 agentMom shall support the ability to decrypt multicast message.

 3.2.5 Architecture
3.2.5.1 *agentMom with shall support the use of the architecture that agent

directly controls the conversations.
3.2.5.2 *agentMom shall support the use of the architecture that agent’s

components control the conversations.
 3.2.6 Compatibility
 3.2.6.1 The new built agentMom shall be compatible with the agentMom 1.2.

Note: The “ * ” indicates Driving Requirements that need to be demonstrated by the end
of phase II.

 12

CHAPTER 3 – PROJECT PLAN

1 Introduction
 This section provides an overview of project plan

1.1 Purpose
 The purpose of this document is to provide cost estimation and architecture
elaboration plan for the project “Applying Broadcasting/Multicasting/Secured
Communication to agentMom in Multi-Agent Systems”. This document is intended to be
viewed only by project advisor and committee members.

1.2 Scope
 This document covers project plan for the project “Applying
Broadcasting/Multicasting/Secured Communication to agentMom in Multi-Agent
Systems”, including time frame, cost estimation and architecture elaboration plan. Time
frame provides the phases, iterations and milestones that will comprise the project. Cost
estimation provides a detailed estimate on the size, cost and effort required for the
project. Architecture elaboration plan provides details of activities and actions that must
be accomplished prior to the Architecture presentation.

2 Time Frame
Deliverable Estimated Date
Phase I: Objectives March - April
Project Overview 1.0 March 24 – March 30
Software Requirements Specification March 24 – March 30
Project Plan March 31– April 06
Software Quality Assurance Plan March 31– April 06
Prototype I March 31– April 06
MSE homepage April 07 – April 13
First presentation April 14 – April 25

Phase II: Architecture April - November
Update Documents April 26 – April 30
Formal Requirement Specification 0.1 May 19 – May 25
Architecture Design 0.1 May 26 – May 31
Test Plan 0.1 June 01 – June 07
Formal Technical Inspection 0.1 June 08 – June 14
Executable Architecture Prototype 0.1 June 08 – June 14
Formal Requirement Specification 1.0 September 01 – September 07
Architecture Design 1.0 September 08 – September 14
Test Plan 1.0 September 15 – September 21
Formal Technical Inspection 1.0 September 22 – September 28
Executable Architecture Prototype 1.0 October 01 – October 15
Second Presentation November 17 – November 21

Phase III: Implementation November – February

 13

Update Documents November 22 – November 30
Component Design December 01 – December 07
Final Product December 08 – December 31
Javadoc December 08 – December 31
Assessment Evaluation January 01 – January 18
User Manual January 19 – January 25
Project Evaluation January 19 – January 25
References January 26 – January 31
Formal Technical Inspection Letters January 26 – January 31
Final Presentation February 24 – February 28

For a graphical representation of the proposed project plan, consult the included Gantt
chart.
3 Cost Estimation
3.1 Function Point

First, the different types of program features must be identified. These include the
following:

a) Internal Logical Files – A file is a major logical group of user data or control

information, which could be in a large database or a separate file. This is zero for the
agentMom.

b) External Interfaces Files – Normally considered files passed or shared between
systems. This is zero for the agentMom.

c) External Inputs – Unique user data or user control input that enters the external
boundary of the system and adds or modifies a logical internal file. The inputs are
unicast message, multicast message, broadcast message, secured multicast message
and secured multicast message. Thus, there are five external inputs.

d) External Outputs – Each user data or control output type leaving the external
boundary of the system is counted. The outputs are unicast message, multicast
message, broadcast message, secured multicast message and secured multicast
message. Thus, there are five external outputs.

e) External Inquiry – Each input-output combination is counted, when input causes an
immediate output. This is zero for the agentMom.

Total Unadjusted Function Points

Type Complexity Function Points
 Low Average High
Internal Logical Files 0
External Interfaces Files 0
External Inputs 5x3 15
External Outputs 5x4 20
External Inquiry 0
Total 35

 14

3.2 COCOMO I
 Estimation is based upon the Organic mode in the Constructive Cost Model
(COCOMO) cost model developed by Barry Boehm. Since this project is fairly simple
and very flexible, we can assume using the Organic mode. Also, original COCOMO
model is used since COCOMO II is more appropriate with large team development
project with large number of developers.
 The COCOMO estimating equations follow this simple form:

Effort = C1*EAF*(Size)P1
Time = C2*(Effort)P2

 where:
Effort = number of person-months
C1 = constant scaling coefficient for effort
C2 = a constant scaling coefficient for schedule
P1 = an exponent that characterizes the economics of scale inherent in the process
used to produce the end product
P2 = an exponent that characterizes the inherent inertia and parallelism in
managing a software development effort
EAF = an effort adjustment factor that characterizes the domain, personnel,
environment, and tools used to produce the artifacts of the process
Size = size of the end product (in human-generated source code), measured by the
number of delivered source instructions
Time = total number of months

 As in Organic mode,
C1 = 3.2
C2 = 2.5
P1 = 1.05
P2 = 0.38

 Since EAF value is difficult to determine, the EAF effect is not considered at this
point. For instance, the EAF of Programmer capability is range from 1.42 – 0.70. It is
hard to specify the value when there is no database that refers to the number of years in
programming experience for each value. The estimation of size is defined as human-
generated source line of code, excluding comments. The SLOC per Function Point for
java is 46, so SLOC is 35 x 46 = 1610.

 Therefore, the total effort and time are:
 Effort = 3.2*(1.610)1.05 = 5.3 person-months (4.9 previously)
 Time = 2.5*(5.3)0.38 = 4.7 months (4.6 previously)
 Productivity = 1610/4.7 = 343 LOC-month (330 previously)
 Staff = 5.3/4.7 = 1.13 person (1.07 previously)
 As the number shown above, this project requires one person to complete in 4.7
months with 343 SLOC per month, or one person works 4.7*152 = 715 hours

Note: As described by Boehm, there are 152 working hours in a month. Therefore, time
to complete this project may vary depend on number of working hours in a month.

 15

4 Architecture Elaboration Plan
4.1 Vision Document (revision)
 After the first presentation, suggestions shall be provided by the committee and these
shall be used to revise the Vision document. The revised document shall be approved by
the major professor. Vision document consists of Project Overview document and
Software Requirements Specification document.

4.2 Project Plan (revision)
 After the first presentation, suggestions shall be provided by the committee and these
shall be used to revise the Project Plan document. The cost estimation shall be updated as
appropriate. Also, the implementation plan shall be included. The revised document shall
be approved by the major professor.

4.3 Formal Requirement Specification
 The class diagram from architecture design shall formally be specified using
UML/OCL methodology. The tool USE, a UML-based Specification Environment, shall
be used. For more information about USE, please refer to
“www.db.informatik.uni-bremen.de/projects/USE/ “

4.4 Architecture Design
 The completed class diagrams and use cases diagrams shall be produced and well
document. This design shall be implemented based upon the class diagram and use cases
presented in Vision document. Also, this architecture design shall be undergo formal
technical inspection.

4.5 Test Plan
 Test plan shall be produced to show that all requirements specified in vision
document are satisfied. Unit testing, integration testing, and system testing shall be
conducted. Unit testing shall be class-based. Two or more related classes shall be used for
integration testing. Finally, the whole system shall be used for system testing. Reliability
shall involve in the testing to measure successful rate of message delivery.

4.6 Formal Technical Inspection
 The architecture design shall be undergo formal technical inspection. The group of
inspector consists Madhukar Kumar of and Acharaporn Pattaravanichanon. The
developer shall develop a formal checklist and provide it to inspectors. The inspectors
shall provide a formal report on the result of their inspection during Phase III.

4.7 Executable Architecture Prototype
 All driving requirements identified in vision document shall be implemented. This
prototype shall be implemented based on the first prototype from phase I. Specifically,
The executable architecture prototype shall be integrated into agentMom, and it shall
have all driving requirements capabilities.

 16

CHAPTER 4 – SOFTWARE QUALITY ASSURANCE PLAN

1 Purpose
 The purpose of this document is to specify how the software quality assurance plan
will be handled in the software development life-cycle of the project “Applying
Broadcasting/Multicasting/Secured Communication to agentMom in Multi-Agent
Systems”. The intended use of this to software project is to enhance the pre-exist
agentMom (agentMom 1.2) to be capable of providing multicasting conversation and
basic message encryption for security purpose. This document is based on the IEEE
standard for Software Quality Assurance Plan, IEEE Std 730.1-1995. This document is
intended to be used in partial fulfillment of the requirements for the Master of Software
Engineering Project’s Portfolio. Furthermore, this document will be reviewed and
evaluated by the major professor and the supervisory committee.

2. Management
2.1 Organization
Supervisory Committee consisted of:

Dr. Scott A. DeLoach
Dr. David Gustafson
Dr. William Hankley

Major Professor:
Dr. Scott A. DeLoach

Developer:
Chairoj Mekprasertvit

Formal Technical Inspector consisted of
 Madhukar Kumar

Acharaporn Pattaravanichanon
2.2 Responsibilities
2.2.1 Supervisory Committee

Primary responsibilities include reviewing each milestone deliverable at the
requirements, architecture, and implementation phases. After reviewing, each
committee member should provide feedback and suggestions to the software
developer.

2.2.2 Major Professor
In addition to the responsibilities as one of the committee member, the major
professor will supervise and evaluate all artifacts submitted by developer. Reviews
and walkthroughs of related materials will be conducted on weekly basis.

2.2.3 Software Developer
Since the project is being developed individually, developer is responsible for
ensuring quality of the project. The software developer is also responsible for
producing the required artifacts for MSE projects.

2.2.4 Formal Technical Inspectors
The major responsibility of inspectors is to provide a formal report on their
inspection result from architecture design artifact produced by developer.

 17

 Furthermore, the following tasks will be conducted in order to ensure quality
assurance:
 1. Driving Requirements: The developer should ensure that the software requirement
specification in the vision document clearly states the functionality of software and
unambiguously declares the requirements that must be satisfied. In addition, descriptions
of the scope should clearly outline what the software will allow and not allow.
 2. Design: The developer and major professor will conduct reviews and analyses of
the construction of the software. Strengths and weaknesses of various design techniques
will be discussed and scrutinized.
 3. Implementation: Informal code reviews will be conducted by the developer on a
regular basis to ensure consistency with the design and the detection of any error. Also,
JavaDoc will be produced for purpose of maintainability and future work.
 4. Testing: Developer will conduct tests as presented in the Software Test Plan to
ensure the requirement satisfaction and reliability of the software.

3. Documentation
 The following documentation will be generated and updated throughout the duration
of software life cycles:
Phase I:

1.) Vision Document - provides detailed description of the entire project, goals of
the software, constraints and requirements for the software to satisfy.

2.) Project Plan - illustrates the major milestones and provides a rough timeline
for the project and estimation on the size and effort of the project.

3.) Software Quality Assurance Plan – provides plan for software quality
assurance

Phase II:
1.) Formal Requirement Specification – UML/OCL methodology will be used to

produce this document.
2.) Test Plan - provides description of test cases during testing
3.) Architecture Design – Object Model and Use Cases will be produced.
4.) Formal Technical Inspection - two MSE students will participate in formal

technical inspection, and developer will also provide an inspection checklist.
Phase III:

1.) User Manual - instructions on how to use software
2.) Final source code - actual implemented documented source code
3.) Assessment Evaluation - assessment of reliability and performance of

software
4.) Project Evaluation - review of the entire project

4. Standards, Practices, Conventions and metrics
4.1 Standards
§ Documents – MSE portfolio requirements, CIS Dept., Kansas State University
§ Coding – Java 1.4.0 (commenting will follow JavaDoc standards)
§ Testing – IEEE Standard for Software Test Documentation

4.2 Metrics

 18

§ SLOC – source lines of code will be primarily used for measuring the size of the
software

§ COCOMO I – cost estimation will be calculated based on COCOMO I model.

5. Reviews and audits
 Two formal MSE students will perform a formal technical inspection on the
architecture design document and provide a formal report. Also, each committee member
will review the produced documentation and make comments and suggestions during
each presentation. Each milestone must be approved by each committee member to
proceed to the next milestone. Each milestone is indicated by the presentation of each
phase. There are three presentation described as follow:
 Presentation I at the end of phase I includes project overview, software requirements,
project plan, SQA plan and prototype demonstration.

 Presentation II at the end of phase II includes formal requirement specification,
architecture design, test plan and architecture prototype demonstration.
 Presentation III at the end of phase III includes component design, assessment
evaluation, project evaluation, result from formal technical inspection and completed
software demonstration.

6. Problem reporting
 If any problems are encountered throughout the duration of the project, the software
developer can report and discuss the problems with the major professor. If any conflicts
or problems are discovered by one of the committee members during a presentation, the
developer will then correct the errors.

7. Tools, Techniques and Methodologies
 For determining whether the software requirements were satisfied, a software test
plan will be written during phase II. This plan will provide an overview of the
methodologies, timetables, and resources for testing the software. Testing will commence
in three primary ways:

7.1 Unit Testing
 Individual classes will be tested to ensure reliability and functionality within a unit-
level. Furthermore, testing module will be created before the tested code to ensure that
the code is testable. Junit 3.8 will be the tool to perform testing. Unit testing will be
performed before alpha and beta release.
7.2 Integration Testing

Several classes will be tested together to ensure sufficient execution and compliance
with the requirements after integration. Integration testing will be performed before beta
release.
7.3 System Testing
 The whole system shall be used for system testing to ensure all requirements is
satisfied, and reliability will be included in the testing to measure successful rate of
message delivery. System testing will be performed before beta release.

The following tools are used in creating, testing and debugging software

 19

§ Java 1.4.2 will be the language used for coding the software.
§ USE 2.0 will be used for modeling the formal specifications, using UML/OCL

methodology
§ Rational Rose will primarily be used for producing object models.
§ Eclipse IDE 2.1 will be used for coding the software package.
§ This software package will be tested under Microsoft Windows XP/2000, Linux

Debian and Solaris 9.

8. Media control
 All the required documentation generated throughout the course of the project is
available at the software developer’s personal website
(http://www.cis.ksu.edu/~cme6556).
 Upon project completion, a CD containing the entire project document, prototype,
and final product is created.

9. Document and Software Version Control
 Each document version or software version is incremented by 0.1 after it is approved
by major professor. Also, version is move to the next digit after it is approved by all
committee members. For example, version 1.2 will be changed to version 2.0 after all
committee approval or version 1.2 to 1.3 after major professor approval.
Alpha version is released after the software is passed all unit tests.
Beta version is released after the software is passed all unit tests, integration tests and
system tests. Final version is released after the software is approved by major professor.

10. Training
CIS 740 Software Engineering
CIS 748 Software Management
CIS 771 Software Specifications
CIS 890 Agent-Oriented Software Engineering

 20

CHAPTER 5 – ARCHITECTURE DESIGN
Architecture Design

1 Introduction
 The purpose of this document is to provide the architecture design including class
diagram, description of class diagram, sequence diagram and description of class diagram
for the project “Applying Broadcasting/Multicasting/Secured Communication to
agentMom in Multi-Agent Systems”. The architecture design of this project is defined by
driving requirement stated in Software Requirements Specification version 1.0. This
document is intended to be viewed only by project advisor and committee members.

 21

2. Class Diagram
2.1 agentMom 1.2

Figure 7 Class Diagram for agentMom1.2
Figure 1 shows the class diagram of agentMom version 1.2. This is the version

that the project is based on. It consists of seven classes with four abstract classes,
MomObject, Agent, Conversation and Component, and three concrete classes, Message,
Sorry and MessageHandler.

 22

2.2 New agentMom

Figure 8 Overall Architecture Design

Figure 2 shows the overall design of new agentMom architecture with inheritance
and association relationship. It consists of 16 classes with nine abstract classes,
MomObject, Agent, Conversation, SecureUnicastConversation, MulticastConversation,
SecureMulticastConversation, BroadcastConversation, AgentConversation and
Component, and seven concrete classes, Message, Sorry, MessageHandler,
MulticastHandler, SecureUnicastHandler, SecureMulticastHandler and
BroadcastHandler.

2.3 Associations

From Figure 2, associations are shown with roles and multiplicities below:

Agent MessageHandler

agent

0..1 0..1

Agent MulticastHandler
0..N 0..1

unicastListener agent

multicastListener

 23

2.4 New Classes
Figure 3, new classes added to agentMom are shown with attributes and method

below:

0..1

Agent

Agent

Agent BroadcastHandler

SecureUnicastHandler

SecureMulticastHandler

0..1

0..1 0..1

0..1 0..1

agent broadcastListener

createdByUnicastcreatedMessage

Message

Message

Message

Message

Message

Conversation

MulticastConversation

SecureUnicastConversation

SecureMulticastConversation

BroadcastConversation

createdMessage

createdMessage

createdMessage

createdMessage

createdBySecured

createdByMulticast

createdBySecureMulticast

createdByBroadcast

0..1

0..1

0..1 0..1

0..1 0..1

0..1 0..1

0..N

0..1

secureUnicastListeneragent

agent secureMulticastListener

 24

Figure 9 Nine New Classes in agentMom

 25

Figure 3 shows the details of new nine classes added to agentMom 1.2. There are
five new abstract classes, including AgentConversation, MulticastConversation,
SecureUnicastConversation and BroadcastConversation and
SecureMulticastConversation. Furthermore, there are four new concrete classes,
including MulticastHandler, SecureUnicastHandler, BroadcastHandler,
SecureMulticastHandler.
2.5 Class Diagram Description
MomObject: Abstract class that both Agent and Component inherit from. It has two
required parameters that must be set for each agent to use agentMom package, name of
the agent and port used for unicast conversation.

Agent: This abstract class defines the minimum requirements for an agent to use
agentMom package.

MessageHandler: This concrete class is used for listening for initial message when other
agents want to start a unicast conversation.

MulticastHandler: This concrete class is used for listening for initial message when other
agents want to start a multicast conversation. It also performs joining multicast group to
receive multicast message from the group. Multicast group is defined by Internet address
class D. Furthermore, it performs actual receiving multicast messages, and then adds
messages to the queue that will be fetched by MulticastConversation class.
MulticastConversation then indirectly receives message.

BroadcastHandler: This concrete class is used for listening for initial message when other
agents want to start a broadcast conversation. It also performs actual receiving broadcast
messages, and then adds messages to the queue that will be fetched by
BroadcastConversation class. MulticastConversation then indirectly receives message.

SecureUnicastHandler: This concrete class is used for listening for initial message when
other agents want to start a secured unicast conversation. It uses the Secure Socket Layers
(SSL) for secured communication.

SecureMulticastHandler: This concrete class is used for listening for initial message
when other agents want to start a secured multicast conversation. It can also perform
message encryption and decryption. This class works in the same way as
MulticastHandler. The different is that it decrypts the received message before it adds
message to the queue.

Component: This abstract class is used for internal communication of components within
an agent.

AgentConversation: Abstract class that unicast, multicast, broadcast and secured
conversation inherit from. Basically, all conversation classes are generalization of this
class.

 26

Conversation: This abstract class provides unicast communication among agents. It
carries out the message passing between agents. Unicast conversation is controlled by the
implementation class of this class.

Message: This class defines the field used in the message for agent communication.

MulticastConversation: This abstract class provides multicast communication. It is used
for sending and receiving multicast message. This class indirectly receives message from
the message queue controlled by MulticastHandler. Multicast conversation is controlled
by the implementation class of this class.

BroadcastConversation: This abstract class provides broadcast communication. It is used
for sending and receiving broadcast message. The message sent by this class is
broadcasting to every host under the same local area network as the sender. This class
indirectly receives message from the message queue controlled by BroadcastHandler.
Broadcast conversation is controlled by the implementation class of this class.

Sorry: This class is a concrete class of conversation class. It is a default conversation
class that sends message when an agent receives unknown conversation.

SecureUnicastConversation: This abstract class provides secured unicast communication
among agents. It carries out the message passing between agents using SSL
communication. SecureUnicastConversation is controlled by the implementation class of
this class.

SecureMulticastConversation: This abstract class provides secured multicast
communication. It is used for sending and receiving secured multicast message. This
class indirectly receives message from the message queue controlled by
SecureMulticastHandler. Secured multicast conversation is controlled by the
implementation class of this class. This class works in the same way as
MulticastConversation. The different is that it encrypts the message before sending out.

3. Sequence Diagram
 This section shows the sequence diagrams of the basic scenarios of agent
communication including unicast, multicast and broadcast conversation.
3.1 Unicast conversation
 In Figure 11 shows how agent may exchange message using unicast conversation.
On one side, the agent A2 creates the MessageHandler H1 that creates the ServerSocket
class SS2 and then waits for a connection from other agents. When the agent A1 want to
communicate with A2, A1 starts the unicast conversation with A2 by creating the
Conversation object C1 that controls the unicast conversation between agents.
Conversation class C1 then creates the Socket object for sending and receiving unicast
message. First, Conversation C1 request for a connection with the ServerSocket SS2. The
ServerSocket SS2 simply accepts it and then creates the Socket S2 that is connected to
S1. After both Socket S1 and S2 are connected, the MessageHandler H1 calls the
receiveMessage method in A2 with the created socket. Then, Agent A2 creates the

 27

Conversation C2. At this point, conversation is controlled by two Conversation classes
C1 and C2. Messages are passing back and forth until the conversation is completed as
defined in the each Conversation class. Finally, each conversation closes the socket at
each side.

A1: Agent C1:
Conversation

S1: Socket C2:
Conversation

SS2:
ServerSocket

H1:
MessageHandler

S2: Socket A2: Agent

create()

create()
Making connection with SS2

create()
create()

accept()

Socket S2

create()

receiveMessage(Socket S2)

create(Socket S2)
ObjectOutputStream.write(Message M1)

Message M1 passed by value to S2

ObjectOutputStream.read()

ObjectOutputStream.write(Message M2)

ObjectOutputStream.read()

Message M2 passed by value to S1

Message M2

close() close()

Message M1

Figure 10 Starting Unicast Conversation

3.2 Multicast conversation
 Multicast conversation can be categorized into three scenarios, join group, leave
group and conversation.
 In Figure 12 shows how an agent may join the multicast group. To join the group,
Agent A1 creates the MulticastHandler H1. The MulticastHandler H1 then creates the
MulticastSocket S1 and calls joinGroup method in the MulticastSocket class to notify the
router that this machine want to join the multicast group. The MulticastHandler H1 then
sends a join message to all agents previously existing in the group. In this case, the
MulticastHandler H2 belonging to Agent A2 receives the join message, and then calls in
receiveMulticastJoin method in the Agent A2.

Iteration [while conversation not end]

Conversations exchange message
until the conversation is finished.
Each conversation may perform read
and write in any order, e.g. write,
write, read and write.When
conversation is finished, each side
close socket connection

 28

A1: Agent H1:
MulticastHandler

S1:
MulticastSocket

S2:
MulticastHandler

A2: AgentS2:
MulticastHandler

create() create()

joinGroup

sendJoin(Message join)

Message join passed by value to S2

read()

Message join

receiveMulticastJoin(Message join)

Figure 11 Join Multicast Group

In Figure 13 shows an agent may starts the multicast conversation with the group.

Agent A1 creates the MulticastConversation C1. MulticastConversation C1 then send the
start conversation message to the group. In this case Agent A2’s MulticastHandler
receive a request to start a new conversation. It calls the receiveMulticastConversation
method in Agent A2. Then Agent A2 starts a new MulticastConversation corresponding
to the request. At this point, conversation is controlled by the MulticastConversation class
at each side of Agent. Messages are passing back and forth within the group until the
conversation is completed as defined in the each MulticastConversation class.

 29

V1: VectorA1: Agent H1:
MulticastHandler

C1:
MulticastConversation

S1:
MulticastSocket

S2:
MulticastSocket

C2:
MulticastConversation

V2: Vector A2: AgentH2:
MulticastHandler

create()

send(Message start)
read()

Mesage start
Message start passed by value to S2

receiveMulticastConversation(Message start)

create(Message start)
send(Message M1)

read()

Message M1
add(Message M1)

Message M1 passed by value to S1

remove()

Message M1

send(Message M2)

remove()

Message M2

read()

Message M2 Passed by value to S2 Message M2

Figure 12 Multicast Conversation

In Figure 14 shows how an agent may leave the multicast group. To leave the

group, Agent A1 calls setLeave method in MulticastHandler H1 and passes the value
true. The MulticastHandler H1 then send a leave message to the all agents in the group by
calling the send method in MulticastSocket. In this case, the Agent A2’s
MulticaastHandler receives the leave message and then calls the receiveMulticastLeave
method in the Agent A2. Finally, the MessageHandler H1 calls leaveGroup method in the
MulticastSocket class to notify the router that this machine wants to leave the multicast
group, and then close the multicast socket.

Iteration [while conversation not end]

Conversations exchanges message until the
conversation is finished. Each conversation
may perform read and write in any order, e.g.
write, write, read and write.

 30

S2:
MulticastSocket

A1: Agent H1:
MulticastHandler

S1:
MulticastSocket

H2:
MulticastHandler

A2: Agent

setLeave(true)

leaveGroup()

sendLeave(Message leave)

read()

Message leave
Message leave passed by value to S2

receiveMulticastLeave(Message leave)

close()

Figure 13 Leave Multicast Group

3.3 Broadcast conversation
In Figure 15 shows how an agent may start the broadcast conversation with other

agents on the same local network. Agent A1 creates the BroadcastConversation C1. The
BroadcastConversation C1 then send the start conversation message to all agent under the
same local network. In this case Agent A2’s BroadcastHandler receive a request to start a
new conversation. It calls the receiveBroadcastConversation method in Agent A2. Then
Agent A2 starts a new BroadcastConversation corresponding to the request. At this point,
conversation is controlled by the BroadcastConversation class at each side of Agent.
Messages are passing back and forth within the agents in the same local network until the
conversation is completed as defined in the each BroadcastConversation class.

 31

C2:
BroadcastConversation

A1: Agent H1:
BroadcastHandler

C1:
BroadcastConversation

S1:
DatagramSocket

S2:
DatagramSocket

H2:
BroadcastHandler

A2: AgentV2: Vector

create()

send(Message start)

read(Message start)

send(Message M1)

read(Message M1)

add(Message M1)

receiveBroadcastConversation(Message start)

Message start

create()

Message start passed by value to S2

Message M1

remove()

Message M1

Message M1 passed by value

send(Message M2)

read()

Message M2
Message M2 passed by value

Figure 14 Broadcast Conversation

Iteration [while conversation not end]

Conversations exchanges message until the
conversation is finished. Each conversation
may perform read and write in any order, e.g.
write, write, read and write.

 32

CHAPTER 6 – FORMAL REQUIREMENT SPECIFICATION

1. Introduction
1.1 Purpose
 The purpose of this document is to provide the formal requirement specification
of the project “Applying Broadcast/Multicast/Secured communication to agentMom in
Multi-Agent Systems”. This specification uses the UML/OCL methodology as specified
in the UML specification version 1.5. The Object Constraint Language (OCL) is a formal
language used to express constraint and specify invariant for the system being model. It
provides a precise and unambiguous specification of the system.

1.2 Scope
 In the specification, we specify the pre and post condition of the interest
properties to ensure that these properties are hold in our system model. These properties
are:
1.) Unicast conversation

1.1) Only the specified address receives the unicast message.
1.2) Sent message is the same as received message

2.) Multicast conversation
2.1) Only the specified group receives the multicast message for that group
2.2) Sent message is the same as received message

3.) Broadcast conversation
3.1) Only the conversations holding the same broadcast address receive the

broadcast message.
3.2) Sent message is the same as received message

4.) Secured unicast conversation
4.1) Only the specified address receives the unicast message
4.2) Sent message is the same as received message

The properties are based on the driving requirement as stated in the Software

Requirement Specification version 1.0. Furthermore, we use the UML- based
Specification Environment (USE) tool to check the type and syntax to ensure correctness
of the specification. Please refer to the file “agentMom_ocl.doc” in the included CD for a
full specification of the model.

2 Formal Requirement Specification Descriptions
 This section explains the unicast conversation and multicast conversation
specification in detail. Because unicast conversation and secured unicast conversation
specifications are almost identical, only the unicast conversation specification is covered.
Also, it is the same as multicast conversation and broadcast conversation specifications.

2.1 Unicast conversation
 The unicast conversation is named “Conversation”. The attributes of this class
are: m, localhost and connectionHost. The attribute m is a Message type, and it is used
for storing a message sent to another agent. The attribute Localhost is a String type of
Internet address of the agent. The attribute connectionHost is a String type of Internet

 33

address of the connecting agent (receiver agent). Furthermore, the class and association
related to unicast conversation is shown below:

class Conversation
attributes
m: Message;
Localhost: String;
connectionHost: String;
connectionPort: Integer;
operations
sendMessage(m: Message)
receiveMessage(): Message
end

association Agent-Conversation between
 Agent[1] role agent
 Conversation[0..*] role unicastConversation
End

association ConstructUnicast between
 Conversation[0..1] role createdByUnicast;
 Message[0..1] role createdMessage;
end

association ReceiveUnicast between
 Conversation[0..1] role receivedByUnicast;
 Message[0..1] role receivedMessage;
end

Finally, the pre and post condition related to this class is described below:

2.1.1 Only the specified address receives the unicast message.

context Conversation::sendMessage(m: Message)
-- unicast conversation associates with the Message parameter
 pre cond_1: self.createdMessage = m
-- Message must be well defined before sending
 pre cond_2: m.isDefined
-- Only the destined address and port receive the message.
 post cond_3: Conversation.allInstances->
 exists(c: Conversation|
 ((c.Localhost = self.connectionHost
 and
 c.agent.port = self.connectionPort)
 implies
 c.receivedMessage = m)
 and
 (c.receivedMessage = m
 implies
 (c.Localhost = self.connectionHost
 and
 c.agent.port =
 self.connectionPort)))

 34

This part of specification defines pre and post condition of the operation
sendMessage of the class Conversation. There are two pre-conditions and one post-
condition. The pre-condition “cond_1” states that the Message object m must be created.
The pre-condition “cond_2” states that the attributes of Message object m must be
defined. Finally, the post-condition “cond_3” states that there exist a Conversation object
that receives the Message object m, and the Internet address and port number of the
receiver must be the same as the address that sender connects to. Therefore, only the
specified address and port number receives the unicast message.

2.1.2 Received message is the same as sent message

-- Receive unicast pre-post condition
-- Received message is the same as sent message
context Conversation::receiveMessage(): Message
-- New received message is created
 post cond_1: self.receivedMessage.oclIsNew = true
-- New created received message is the same as sent Message
 post cond_2: Conversation.allInstances->
 exists(c: Conversation|
 ((c.connectionHost = self.Localhost
 and
 c.connectionPort = self.agent.port)
 implies
 c.createdMessage =
 self.receivedMessage)
 and
 (c.createdMessage =
 self.receivedMessage
 implies
 (c.connectionHost = self.Localhost
 and
 c.connectionPort =
 self.agent.port)))
-- Result of receiveMessage()
 post cond_3: result = self.receivedMessage

This part of specification defines pre and post condition of the operation
recevieMessage of the class Conversation. There are three post-conditions. The post-
condition “cond_1” states that the received Message object is created during the
operation receiveMessage (Message is received from another agent). The post-condition
“cond_2” states that the new received Message object must be the same as the Message
object that is sent by the sender. The post-condition “cond_3” specifies the return result
of this operation. In this case, it is the received message is returned. Therefore, the sent
message is the same as received message.

2.2 Multicast conversation

The multicast conversation is named “MulticastConversation”. The attributes of
this class are: multicastPort, m, join and multicastAddress. The attribute m is a Message
type, and it is used for storing a message sent to another agent. The attribute
multicastAddress is a String type of multicast address of the group that agent subscribes

 35

to. The attribute multicastPort is a Integer type of the port that multicast listening.
Furthermore, the association related to multicast conversation is shown below:

class MulticastConversation
attributes
multicastPort: Integer;
m: Message;
join: Boolean;
multicastAddress: String;
operations
sendMessage(m: Message)
sendJoin()
sendLeave()
receiveMessage(): Message
end

association Agent-MulticastConversation between
 Agent[1] role agent
 MulticastConversation[0..*] role multicastConversation
end

association ConstructMulticast between
 MulticastConversation[0..1] role createdByMulticast;
 Message[0..1] role createdMessage;
end

association ReceiveMulticast between
 MulticastConversation[0..1] role receivedByMulticast;
 Message[0..1] role receivedMessage;
end

2.2.1 Only the specified group receives the multicast message for that group

-- Send multicast pre-post condition
context MulticastConversation::sendMessage(m: Message)
-- Multicast conversation associates with the Message parameter
 pre cond_1: self.createdMessage = m
-- Message must be well defined before sending
 pre cond_2: m.isDefined
-- Need to subscribe to the multicast group first
 pre cond_3: self.join = true
-- All conversations that have the same multicast address and port
receives the
-- message, including itself.
 post cond_4: MulticastConversation.allInstances->
 forAll(c: MulticastConversation|
 ((c.multicastAddress =
 self.multicastAddress
 and
 c.multicastPort =
 self.multicastPort)
 implies
 c.receivedMessage = m)
 and
 (c.receivedMessage = m

 36

 implies
 (c.multicastAddress =
 self.multicastAddress
 and
 c.multicastPort =
 self.multicastPort)))

This part of specification defines pre and post condition of the operation
sendMessage of the class MulticastConversation. There are three pre-conditions and one
post-condition. The pre-condition “cond_1” states that the Message object m must be
associated with the sender. The pre-condition “cond_2” states that the attributes of
Message object m must be defined. The pre-condition “cond_3” states that the join
attribute of the agent must be true (agent must join in the group first). Finally, the post-
condition “cond_4” states that all MulticastConversation objects that subscribes to the
same multicast address and listening to the same port as the sender receive the Message
object m. Therefore, all subscribers receive multicast message.

2.2.2 Multicast sent message is the same as received message

-- Receive multicast pre-post condition
context MulticastConversation::receiveMessage(): Message
 pre cond_1: self.join = true
-- New received message is created
 post cond_2: self.receivedMessage.oclIsNew = true
-- New created received message is the same as sent
 post cond_3: MulticastConversation.allInstances->
 exists(c: MulticastConversation|
 ((c.multicastAddress =
 self.multicastAddress
 and
 c.multicastPort =
 self.multicastPort)
 implies
 c.createdMessage =
 self.receivedMessage)
 and
 (c.createdMessage =
 self.receivedMessage
 implies
 (c.multicastAddress =
 self.multicastAddress
 and
 c.multicastPort =
 self.multicastPort)))
-- Result of receiveMessage()
 post cond_4: result = self.receivedMessage

This part of specification defines pre and post condition of the operation
receiveMessage of the class MulticastConversation. There are one pre-condition and

three post-conditions. The pre-condition “cond_1” states that the join attribute must be
true. The post-condition “cond_2” states that the received Message object is created

during the operation receiveMessage (Message is received from another agent). The post-
condition “cond_3” states that the received Message object must be the same as the sent

 37

Message object. That is there exists a sending conversation that subscribe to same group
and listen to the same port as the receiving conversation, then sent message is the same as

received message. The post-condition “cond_4” specifies the return result of this
operation. In this case, it is the received message is returned. Therefore, the sent message

is the same as received message.

 38

CHAPTER 7 – IMPLEMENTATION PLAN

1 Introduction
 This section provides an overview of implementation plan.
1.1 Purpose
 The purpose of this document is to provide work breakdown structure of the
implementation phase and implementation plan for the project “Applying
Broadcasting/Multicasting/Secured Communication to agentMom in Multi-Agent
Systems”. This document is intended to be viewed only by project advisor and committee
members.
2. Work Breakdown Structure for Implementation Phase

Deliverable Task Completion
Criteria

Time Cost
(day)

1.) Update class diagram from
architecture phase

Class diagram is
approved by
committee
members.

22
October –
30
October

1 Revised
Architecture
Design

2.) Update sequence diagram
from architecture phase

All sequence
diagrams are
approved by
committee
members.

22
October –
30
October

1

Revised Test
Plan

1.) Update test plan from
architecture phase

Test Plan is
approved by
committee
members.

22
October –
30
October

1

Revised
Formal
Requirement
Specification

1.) Update Formal
Requirement Specification
from architecture phase

Formal
Requirement
Specification is
approved by
committee
members.

22
October –
30
October

1

1.) Complete class diagram Internal design of
each class is
defined.

December
01 –
December
07

3 Component
Design

2.) StateChart Diagram All conversation
handlers is
defined.

December
01 –
December
07

4

Coding 1.) Produce multicast
conversation module

Executable codes
are produced.

December
08 –
December
31

1

 39

2.) Produce broadcast
conversation module

Executable codes
are produced.

December
08 –
December
31

1

3.) Produce secured multicast
conversation module

Executable codes
are produced.

December
08 –
December
31

3

4.) Produce secured unicast
module

Executable codes
are produced.

December
08 –
December
31

1

5.) Produce multicast handler
module

Executable codes
are produced.

December
08 –
December
31

1

6.) Revise unicast
conversation module

Executable codes
are produced.

December
08 –
December
31

1

7.) Revise unicast handler
module

Executable codes
are produced.

December
08 –
December
31

1

8.) Revise component module Executable codes
are produced.

December
08 –
December
31

1

9.) Revise agent module Executable codes
are produced.

December
08 –
December
31

1

1.) Produce stub modules for
unit testing

Stub module for
unit testing is
produced as
defined in test
plan.

January
01 –
January
18

2 Unit testing

2.) Perform unit testing All unit testing are
passed.

January
01 –
January
18

2

Integration
testing

1.) Produce stub modules for
integration testing

Stub module for
integration testing
is produced as
defined in test
plan.

January
01 –
January
18

2

 40

 2.) Perform unit testing and
integration testing

All unit testing
and integration
testing are passed

January
01 –
January
18

2

1.) Produce simple multi-
agent systems

Stub module for
System testing is
produced as
defined in test
plan.

January
01 –
January
18

2 System
testing

2.) Perform system testing System testing is
passed.

January
01 –
January
18

2

JavaDoc 1.) Produce JavaDoc from all
source codes.

JavaDoc is
approved by
project advisor.

December
08 –
December
31

1

Assessment
Evaluation

1.) Document the testing
results

Unit, integration
and system testing
is summarized,
including failure
rate.

December
08 –
December
31

1

1.) Evaluate the usefulness of
the methodologies used and
accuracy of the estimations

Document is
approved by
project advisor.

January
19 –
January
25

1 Project
Evaluation
Document

2.) Evaluate the final product
whether it meet all the
requirements stated in the SRS

Document is
approved by
project advisor.

January
19 –
January
25

1

References 1.) Compile references from
all documents

References from
all documents are
compiled.

January
26 –
January
31

0.5

Formal
Technical
Inspection
Letters

1.) Collect Formal Technical
Inspection Letter

Two inspection
letters are
collected.

January
26 –
January
31

0.5

User Manual 1.) Produce user manual User manual is
approved by
project advisor.

January
19 –
January
25

2

Total cost 41

 As described by Boehm, there are 152 working hours in a month, or 7 hours per
day if there are 22 working days per month. Therefore, implementation phase will need

 41

41*7 = 287 hours. Furthermore, using COCOMO model gives 715 hours to complete this
project, and so far less than 400 hours are spent on this project by counting from the
timelog. Thus, it is likely that this project will complete early.
3. Implementation Plan
3.1. Documents Update
 After the second presentation, suggestions provided by the committee will be used
to update the documents produced during the architecture phase. Also, the results from
formal technical inspection will be used to update the documents. The revised document
will be approved by the major professor and committee members.
3.2 User Manual
 The user manual will be produced based on the previous agentMom’s User
Manual. The manual will describe how to use the agentMom framework. The manual
also includes new agentMom’s source code and an example on how to use the
framework.
3.4 Component Design
 The internal design of each component will be produced. The completed class
diagram and sequence diagram will be produced and well document.
3.5 Source Code
 agentMom source code will be document using JavaDoc standard. Also, JavaDoc
API document for the new agentMom will be produced.
3.6 Assessment Evaluation
 Test summary will be produced including testing results, error rate diagrams and
description.
3.7 Project Evaluation
 The developer will review the project. The process will be reviewed, including the
usefulness of the methodologies used, the accuracy of the estimations, and the usefulness
of the reviews. Furthermore, the product will be reviewed and evaluated for whether it
accomplishes the ideas presented in the initial overview and for the quality of the
product. Summarized of the evaluation will be document.
3.8 References
 Annotated bibliography with cited references for all notations used in the project
portfolio will be document.
3.9 Alpha version
 All classes defined in the completed class diagram will be implemented, and unit
testing will be performed before the release of alpha version.
3.10 Beta version
 Integration testing must be passed as defined in the test plan before the release of
beta version.
3.11 Final product
 System testing must be passed as defined in the test plan before the release of
final product.
3.12 Final Product Demonstration
 A simple multi-agent system will be produced to demonstrate the software
requirements and features.

 42

CHAPTER 8 – FORMAL INSPECTION CHECKLIST

1. Introduction
 The purpose of this document is to provide a formal checklist for the architecture
design documents of the project “Applying Broadcast/Multicast/Secured Communication
to agentMom in Multi-Agent Systems. Formal technical inspection process will ensure
the quality of the software design. Two independent MSE students will perform the
inspection and provide the formal report on the result of their inspection.
2. Item to be inspected
 Architecture design documents of the project “Applying
Broadcasting/Multicasting/ Secured Communication to agentMom in Multi-Agent
Systems” including use cases diagram, class diagram and sequence diagram will be
inspected.
 The following documents will be supplied to each inspector for inspection and
references:

1.) Software Requirements Specification version 1.0 *
2.) Project Overview version 1.0 *
3.) agentMom User’s Manual *
4.) Class Diagram
5.) Sequence Diagram
6.) Use Case Diagram

Note: The star (*) indicates that the document is available only for references, not for
inspection.
3. Organization
Supervisory Committee consisted of:

Dr. Scott A. DeLoach
Dr. David Gustafson
Dr. William Hankley

Major Professor:
Dr. Scott A. DeLoach

Developer:
Chairoj Mekprasertvit

Formal Technical Inspector consisted of
 Madhukar Kumar

Acharaporn Pattaravanichanon

4. Formal Technical Inspection Checklist

Item Pass/Fail/Partial Comment

1. All the symbol used in the use case
diagram conforms to the UML standard.

2. All the symbol used in class diagram
conforms to UML standard.

3. All the symbol used in Sequence
diagram conforms to UML standard

4. If there is a message passing between

 43

objects in sequence diagram, association
relationship in class diagram is defined.
5. Each message in sequence diagram is a
method in class diagram.

6. Use case scenarios and description are
clear.
Example: use case scenarios are clearly
explained.

7. Class diagram and description are
clear.
Example: role and responsibility of each
class are clearly explained.

8. Sequence diagram and description are
clear.

9. Names used in class diagram indicated
their meaning.
Example: class MulticastConversation
indicates that it is used for sending and
receiving multicast message.

10. The defined public attributes should
be accessible to the outside class.

11. The defined private attributes should
be accessible only within the class.

12. The defined protected attributes
should be accessible by subclass or other
classes in the agentMom package.

 44

Formal Technical Inspection

Completed for Dr DeLoach and Chairoj Mekprasertvit

I have completed the Formal Technical Inspection for Chairoj Mekprasertvit’s MSE
project and found no obvious or serious errors in the documentation provided to me.
According to my opinion, the checklist and the documentation appear to be in the desired
order.

Acharaporn Pattaravanichanon

 45

Formal Technical Inspection Checklist

Item Pass/Fail/Partial Comment
1. All the symbol such used in the use
case diagram conforms to the UML
standard.

Pass

2. All the symbol used in class diagram
conforms to UML standard.

Pass

3. All the symbol used in Sequence
diagram conforms to UML standard

Pass

4. If there is a message passing between
objects in sequence diagram, association
relationship in class diagram is defined.

Pass

5. Each message in sequence diagram is a
method in class diagram.

Pass

6. Use case scenarios and description are
clear.
Example: use case scenarios are clearly
explained.

Pass

7. Class diagram and description are
clear.
Example: role and responsibility of each
class are clearly explained.

Pass

8. Sequence diagram and description are
clear.

Pass

9. Names used in class diagram indicated
their meaning.
Example: class MulticastConversation
indicates that it is used for sending and
receiving multicast message.

Pass

10. The defined public attributes should
be accessible to the outside class.

Pass

11. The defined private attributes should
be accessible only within the class.

Pass

12. The defined protected attributes
should be accessible by subclass or other
classes in the agentMom package.

Pass

 46

Formal Technical Inspection

Completed for Dr DeLoach and Chairoj Mekprasertvit

I have completed the Formal Technical Inspection for Chairoj Mekprasertvit’s MSE
project and found no obvious or serious errors in the documentation provided to me.
According to my opinion, the checklist and the documentation appear to be in the desired
order.

Madhukar Kumar

 47

Formal Technical Inspection Checklist

Item Pass/Fail/Partial Comment
1. All the symbol such used in the use
case diagram conforms to the UML
standard.

Pass

2. All the symbol used in class diagram
conforms to UML standard.

Pass

3. All the symbol used in Sequence
diagram conforms to UML standard

Pass

4. If there is a message passing between
objects in sequence diagram, association
relationship in class diagram is defined.

Pass

5. Each message in sequence diagram is a
method in class diagram.

Pass

6. Use case scenarios and description are
clear.
Example: use case scenarios are clearly
explained.

Pass

7. Class diagram and description are
clear.
Example: role and responsibility of each
class are clearly explained.

Pass

8. Sequence diagram and description are
clear.

Pass

9. Names used in class diagram indicated
their meaning.
Example: class MulticastConversation
indicates that it is used for sending and
receiving multicast message.

Pass

10. The defined public attributes should
be accessible to the outside class.

Pass

11. The defined private attributes should
be accessible only within the class.

Pass

12. The defined protected attributes
should be accessible by subclass or other
classes in the agentMom package.

Pass

 48

CHAPTER 9 – TEST PLAN
1. Test Plan Identifier

TestPlan-agentMom-001
2. Introduction

This test plan is used to address the requires tests to show that the agentMom
framework after the integration of broadcast, multicast and security features satisfies
the requirements stated in the Software Requirements Specification version 1.0

2.1 Objectives
a.) To detail the activities required to prepare for and conduct the test
b.) To define the test cases needed to be performed
c.) To define the types of tests that will be used for each test cases
d.) To define the environment needed to perform the test

3. Test Items
The executable java classes to be tested are identified below:

a.) Conversation class
b.) MulticastConversation class
c.) BroadcastConversation class
d.) SecureUnicastConversation class
e.) SecureMulticastConversation class
f.) MulticastHandler class
g.) BroadcastHandler class
h.) SecureMulticastHandler class
i.) MessageHandler class
j.) SecureUnicastHandler class

4. Features to be tested
The following list describes the features that will be tested:

Specification Number Description
T-001 Sending unicast message
T-002 Sending multicast message
T-003 Sending Broadcast Message
T-004 Sending secured unicast message
T-005 Sending secured multicast message
T-006 Subscribe to multiple multicast group
T-007 Receiving unicast message
T-008 Receiving multicast message
T-009 Receiving broadcast message
T-010 Receiving secured unicast message
T-011 Receiving secured multicast message
T-012 Encrypting message
T-013 Decrypting message

5. Features not to be tested
The test cases will not cover all possible size and value of sent message. Only

possible size and value that are known to be required by project committee will be

 49

tested. Also, The test cases will not cover all possible combined features. Only classes
that are related will be performed integration testing.

6. Approach
Unit testing – each executable java class identified in section 3 will be tested. One

or more stub modules will be created to test functionality of each class. Junit 3.8 will be
the tool to perform testing. Unit testing will be performed before alpha release.

Integration testing – Several related classes will be tested together to ensure
sufficient execution and compliance with the requirements after integration. One or more
stub modules will be created to test functionality of combined classes. Integration testing
will be performed before beta release. In this test, two architectures, component-based
and agent-based, are to be considered.

System testing – The whole system will be used for system testing to ensure all
requirements is satisfied, and reliability will be included in the testing to measure
successful rate of message delivery. Simple multi-agent systems will be created to
perform system testing. System testing will be performed before final release.
7. Environmental needs
7.1 Hardware
 The testing will be done on the CIS computer lab at Kansas State University.
Furthermore, the testing will be done on the Sun Sparc machine and Intel-based machine
available in the computer lab.
7.2 Software
 j2sdk version 1.4.2 is used to compile and execute the program.
7.3 Operating Systems
 1.) Windows XP professional
 2.) Linux Debian
 3.) Unix Solaris
8. Test Cases
Unit testing:
8.1 Sending and receiving unicast message

Input: Message Object
Test Item: Conversation class
Method: Create sender agent and receiver agent. Sender agent sends Message

object to receiver agent through unicast conversation.
Valid:
Received Message object is the same as sending Message object.
Invalid:
Received Message object is not the same as sending Message object.

8.2 Sending and receiving multicast message
Input: Message Object
Test Item: MulticastConversation class
Method: Create sender agent and two receiver agents. All of agents subscribe to

the same multicast address. Sender agent sends Message object to the receiver agents
through multicast conversation.

Valid:
All receiver agents receive Message object

 50

All received Message objects are the same as sending Message object.
Invalid:
One or more agents do not receive Message object
One or more received Message objects are not the same as sending Message

object.

8.3 Sending and receiving Broadcast Message
Input: Message Object
Test Item: BroadcastConversation class
Method: Create sender agent and two receiver agents. All of agents are under the

same local network. Sender agent sends Message object to the receiver agents through
broadcast conversation.

Valid:
All receiver agents receive Message object
All received Message objects are the same as sending Message object.
Invalid:
One or more agents do not receive Message object
One or more received Message objects are not the same as sending Message

object.

8.4 Sending and receiving secured unicast message
Input: Message Object
Test Item: SecureUnicastConversation class
Method: Create sender agent and receiver agent. Sender agent sends Message

object to receiver agent through secured unicast conversation.
Valid:
Received Message object is the same as sending Message object after decrypting.
Message object is encrypted before sending.
Invalid:
Received Message object is not the same as sending Message object after

decrypting.
Message object is not encrypted

8.5 Sending and receiving secured multicast message
Input: Message Object
Test Item: SecureMulticastConversation class
Method: Create sender agent and two receiver agents. All of agents subscribe to

the same multicast address. Encryption and decryption key are pre-defined. Each agent
has the same encryption and decryption key. Sender agent sends Message object to the
receiver agents through secured multicast conversation.

Valid:
All receiver agents receive Message object
All received Message objects are the same as sending Message object.
Invalid:
One or more agents do not receive Message object

 51

One or more received Message objects are not the same as sending Message
object.

8.6 Encrypting and decrypting message

Input: Message Object
Test Item: SecurityManager class
Method: Create agent to read Message object. Input the Message object to

SecurityManager class.
Valid:
Message object is unreadable after it is encrypted.
Message object is readable after it is decrypted.
Invalid:
Message object is readable after it is encrypted.
Message object is unreadable after it is decrypted.

Integration testing:
8.7 Subscribe to multiple multicast group plus agent-based architecture

Input: Message Object
Test Item: MulticastHandler and MulticastConversation class
Method: Create sender agent and two receiver agents. All of agents subscribe to

three different multicast addresses. Sender agent sends Message object to the three
multicast addresses through multicast conversation.

Valid:
All receiver agents receive all Message object.
All received Message objects are the same as Sending Message objects.
Invalid:
One or more agents do not receive one or more of Message objects.
One or more received Message objects are not the same as sending Message

objects.

8.8 Subscribe to multiple multicast group with multicast security plus agent-based
architecture

Input: Message Object
Test Item: SecureMulticastConversation, MulticastConversation and

MulticastHandler class
Method: Create sender agent and two receiver agents. Encryption and decryption

key are pre-defined. Each agent has the same encryption and decryption key. All of
agents subscribe to two multicast addresses, one for multicast conversation and another
one for secured multicast conversation. Sender agent sends Message object to the
receiver agents through multicast conversation and secured multicast conversation.

Valid:
Message object is encrypted before sending.
Message object is decrypted after receiving.
All receiver agents receive all Message objects
All received Message objects are the same as Sending Message object.
Invalid:

 52

Message object is not encrypted before sending.
Message object is not decrypted after receiving.
One or more agents do not receive Message object.
One or more received Message objects are not the same as sending Message

object.
8.9 Subscribe to multiple multicast group plus component component-based
architecture

Input: Message Object
Test Item: MulticastHandler and MulticastConversation class
Method: Create sender agent and two receiver agents. Each agent has two

components. All of agents subscribe to three different multicast addresses. Sender agent
sends Message object to the three multicast addresses through multicast conversation.

Valid:
All receiver agents receive all Message object.
All received Message objects are the same as Sending Message objects.
Invalid:
One or more agents do not receive one or more of Message objects.

One or more received Message objects are not the same as sending Message objects.
8.10 Subscribe to multiple multicast group with multicast security plus component-
based architecture

Input: Message Object
Test Item: SecureMulticastConversation, MulticastConversation and

MulticastHandler class
Method: Create sender agent and two receiver agents. Each agent has two

components. Encryption and decryption key are pre-defined. Each agent has the same
encryption and decryption key. All of agents subscribe to two multicast addresses, one
for multicast conversation and another one for secured multicast conversation. Sender
agent sends Message object to the receiver agents through multicast conversation and
secured multicast conversation.

Valid:
Message object is encrypted before sending.
Message object is decrypted after receiving.
All receiver agents receive all Message objects
All received Message objects are the same as Sending Message object.
Invalid:
Message object is not encrypted before sending.
Message object is not decrypted after receiving.
One or more agents do not receive Message object.

One or more received Message objects are not the same as sending Message object.

System testing:
8.11 Test all features using agent-based architecture

Input: Message Object
Test Item: all items identified in section 3
Method: Create sender agent and two receiver agents. One agent performs

encryption and decryption key distribution. Each agent requests the key from the

 53

specified agent. All of agents subscribe to two multicast address, one for multicast
conversation and another one for secure multicast communication. Each agent requests
the key from specified agent. Sender agent sends Message object to the receiver agents
through unicast conversation, secured unicast conversation, multicast conversation,
secured multicast conversation and broadcast conversation.

Valid:
All receiver agents receive all Message objects.
All received Message object is the same as sending Message object.
Invalid:
Some receiver agents do not receive all Message objects.
Some received Message object is not the same as sending Message object.

8.12 Test all features using component-based architecture
Input: Message Object
Test Item: all items identified in section 3
Method: Create sender agent and two receiver agents. Each agent has

components. One agent performs encryption and decryption key distribution. Each agent
requests the key from the specified agent. All of agents subscribe to two multicast
address, one for multicast conversation and another one for secure multicast
communication. Each agent requests the key from specified agent. Sender agent sends
Message object to the receiver agents through unicast conversation, secured unicast
conversation, multicast conversation, secured multicast conversation and broadcast
conversation.

Valid:
All receiver agents receive all Message objects.
All received Message object is the same as sending Message object.
Invalid:
Some receiver agents do not receive all Message objects.

Some received Message object is not the same as sending Message object.

Compatibility Testing:

8.13 Test backward compatibility of new agentMom and agentMom 1.2
 Test Item: new agentMom
 Method: Multi-agent systems that can be run on agentMom 1.2 should be able to
run on new agentMom. The source of multi-agent systems will be supplied by Dr.
DeLoach, and will test on new agentMom.
 Valid:
 Supplied systems must be able to run as same as under agentMom 1.2 without
modifying the source code.
 Invalid:
 Supplied systems fails to run under the new agentMom.
9. Schedule

The testing will be performed during January 1, 2003 – January 18, 2003.

