APPLYING BROADCASTING/MULTICASTING/SECURED
COMMUNICATION TO AGENTMOM IN MULTIAGENT-SYSTEMS

by
CHAIROJ MEKPRASERTVIT

B.A., Thammasat Universty, Thailand, 1997
B.S., Pittsburg State University, 2000

A REPORT
submitted in partial fulfillment of the
requirementsfor the degree
MASTER OF SOFTWARE ENGINEERING

Department of Computing and I nformation Sciences
College of Engineering

KANSASSTATE UNIVERSITY
M anhattan, Kansas

2004

Approved by:

Major Professor
Dr. Scott A Del. oach

ABSTRACT

agentMom is aframework for building multi-agent systems. The previous verson
of agentMom supports only the one-to-one communication usng TCP/IP. The god of
this project isto integrate the broadcast, multicast and secured communication to
agentMom. The new security features used in agentMom are Secure Socket Layersin
one-to-one communication and Symmetric Key Algorithm in multicast communication.
The entire project was implemented in javaverson 1.4. Thetota time spent in this
project was 700 hours with 2200 source line of code, approximately.

TABLE OF CONTENTS

TABLE OF CONTENTS ... e e e e e e e i
CHAPTER 1 —PROJECT OVERVIEW. ... e 1
CHAPTER 2 - SOFTWARE REQUIREMENTS SPECIFICATIONcocvviiinn 6

CHAPTER 3 —PROJECT PLAN ..ot e e et e e e en e eneeaen 12
CHAPTER 4 - SOFTWARE QUALITY ASSURANCE PLAN......ccovveevivvnevnnneen.. 16
CHAPTER 5— ARCHITECTURE DESIGNcoooeeiiiiiiiens e e e 20

CHAPTER 6 —- FORMAL REQUIREMENT SPECIFICATION..........oviiiiiiinn, 32

CHAPTER 7 —IMPLEMENTATION PLAN. ..o 38
CHAPTER 8 —FORMAL INSPECTION. ...t e e e 42
CHAPTER 9 —TEST PLAN ..ot e e e 48
CHAPTER 10 — COMPONENT DESIGNooiiiiiiieiiiiesisiesesee s 54
CHAPTER 11 — ASSESSMENT EVALUATION ..ot 98
CHAPTER 12 —USER’SMANUAL ..ot 101
CHAPTER 13 — PROJECT EVALUATIONociiiiiiiii s 167

REFERENGCES ...t 173

LIST OF FIGURES

FIQUrE 1 — @0ENTIMIOM ...ttt 2
Figure 2 — agentMonm’ S @rChItECIUNEccccueeieecieeceeee et 3
Figure 3 — USE CaSE: |@AVE/JOIN ...ttt 8
FIQUrE 4 — USE CASE: UNICBSL ...ttt sttt e st sna e neenneeneenneenneens 9
FIQUre 5 — USE CaSE: MUITICASEc.eivieeiiecesieee e 9
Figure 6 — Use Case: DroadCastcucceeveieieie e 10
Figure 7 — Class diagram: agentMOm 1.2ccoiririiennenenesieee e 21
Figure 8 — ArchiteCture deSIgNcceeieieeiececeeese et 22
Figure 9 — Nine new classes in agentMOM ... 24
Figure 10 — Sequence diagram: starting unicast CONVErSatioNcccceeeereeeeeeeeeeeeens 27
Figure 11 — Sequence diagram: join MUItICaSt QroUpPcccevveeeeeriecresieesesee e eseenens 28
Figure 12 — Sequence diagram: multicast CONVErSAioNccceevrererererereeieeeeereseserenes 29
Figure 13 — Sequence diagram: leave MUItiCast Qroupc.eeoveeeeveeriesieseese e 30
Figure 14 — Sequence diagram: broadcast CONVErsationcoveerrecereneieneneeenenens 31
Figure 15 — Class diagram: new agentMOIMcccccvverererereseneeesee e s 54
Figure 16 — State chart: BroadcastHandler ..o 64
Figure 17 — State chart: MessageHaNdIerccovveeeeeeieececeeeeese e 69
Figure 18 — State chart: MulticastHandler ..o 82
Figure 19 — New agentIMIOMcccoieiieeeeerie e ee e ste e e e e sre e e e ssesnesneeneeneeeens 101
Figure 20 — Class diagram: new agentMOMcccueveeieeieciie e see e see e 102
Figure 21 — new agentMOmM'S @rChItECIUNEceorieerieerieree e 103
Figure 22 — Phase | Break dOWNcccceieieieceie ettt 171
Figure 23 — Phase [Break dOWN ..o 171
Figure 24 — Phase 111 Break dOWNcovciiiiiiicececeeeee et 172
Figure 25 — Project Break JOWNcoiiiiiieiceeesese e 172

CHAPTER 1-PROJECT OVERVIEW

1. Background
1.1 Motivation

Communication is one of the critica parts in multi-agent systems because it enables
the agentsin multi-agent systems to exchange information and cooperate with each other.
This raises the question of what communication technique to be used in multi-agent
systems. An earlier implementation of agentMom developed by Dr. Scott A. Del.oach,
dlows only one-to-one communication using the TCP/IP protocol. However, in the
dtuation where asingle message is destined for many recipients, multiple copies of the
same message have to be sent by usng TCP/IP protocol. Thisis not very efficient when
there are alarge number of agents in the system. Broadcast/M ulticast communication on
the other hand prevents network overloading by generating a single message destined for
multiple recipients. This technique a so reduces the amount of conversations that an agent
has to handle. Depending on the Situations, an agent may choose to unicast over
broadcast/multicast messages. For example, unicast message is more gppropriate when
there are very few recipients. Thus, by integrating broadcast/multicast communication
cgpability, agentMom can provide amore flexible way for an agent to communicate with
other agents

1.2 Multi-Agent Systems
Multi- Agent Systems are one of the most recent contributionsin the field of software
engineering in building digtributed inteligent systems. It is described as a further
abstraction of the object-oriented paradigm where agents are a specidization of objects.
Agents are Smilar to objects, however, they have traits such as autonomy, cooperation,
perception, and pro-activeness that imply characteritics that objects generdly do not
have. Badcdly, there are two differences.
1. Objectsare passive. They react to externd stimuli, but do not exhibit goal
directed behavior.
2. Agentstypicdly use acommon messaging language between dl agents whereas
object messages are usudly class dependent.
Therefore, an object isalogica combination of data structures and its corresponding
methods while agents additionaly support structures for representing mentd state
components such as attitudes, beliefs and goals.

1.3 Example of softwar e agents

There are wide ranges of gpplication domains that are making use of agent- oriented
systems engineering. Software agents are being developed for fidlds as varied as
entertainment, electronic commerce, user assstance, and information systems.

For example,
The animated paperclip agent in Microsoft Office
Computer viruses (destructive agents)
Artificid players or actorsin computer games and smulations (e.g. Quake)
Trading and negotiation agents (e.g. the auction agent at Ebay)
Web spiders (collecting data to build indexes to used by a search engine, i.e.
Google)

agrODNE

1.4 agentMom

Agentsin Multi- Agent systems environment have to communicate with other agents
to be able to cooperate and achieve the assgned goas. However, it is not an easy task for
developers to manage dl communications.

agentMom is acommunication framework for multi-agent sysemsimplemented in
Java. It provides aframework for building agents, conversations between agents and
messages passed in the conversations. Currently in agentMom version 1.2, it consists of
four important classes: Agent, Conversation, Message and MessageHandler. The Agent
classis an abdtract class that defines the minimum set of requirements for an agent to use
agentMom. The Conversation class is an abstract classthat is basicaly used for sending
and receiving message using the TCP/IP protocol. The Message class defines the fidd
used in the message passing between agents such as hogt, port, sender and receiver. The
The MessageHandler classis used to sart a socket on the indicated port and wait for
connection from another agent. Basicdly, it monitors the loca port for esablishing
connection.

Figure 1. agentM om

An overview of how agentMom works is shown in Figure 1. When an agent wants to
dart a conversation with other agents, that agent starts the MessageHandler that opens the
indicated port, and then waits for the connection to establish with the other agent’s
MessageHandler. An agent can start the conversation by establishing socket connection
with another agent’s MessageHandler. When connection has been established and the
initidl message has been vdidated, they can then start sending and receiving messages.

agent agent
conver sation conver sation component component
conver sation conver sation
a Agent directly controls conversations b. Component controls conversations

Figure 2. agentMom’s ar chitectures

Furthermore, there are two architectures that can be applied to agentMom. The
firdt architecture is shown in Figure 2a. In the first architecture, agent directly controls the
conversations. This architecture is very straightforward since conversations belong to
agent. In the second architecture as shown in Figure 2b, an agent conssts of one or more
components, and the conversations belong to components, not directly to agents. Also, an
agent can have multiple components and components can have multiple conversation.

The difference from the first architecture is that component is responsible for making
conversation with other agents. In the first architecture, agents are directly responsible for
controlling the conversation. Having components separately from agent dlows

deveopers to map the agent rol€' s tasks to the component. From now, we will refer to the
first architecture as agent-based architecture and the second architecture as component-
based architecture.

In this project, we will consder these two architectures in applying multicadt,
broadcast and security into agentMom.

2. Project Overview

2.1 Termsand Definitions

Unicad refers to one-to-one communication in such away that a packet originates from a
sngle Internet hogt, and it is destined to a unique location of another Internet host.
Multicast refers to one-to-many communication in such away that a packet originates
from agngle Internet host, and it is destined to multiple recavers within the same
multicast address.

Broadcast refers to one-to-many communication in such away that a packet originates
from asingle Internet hogt, and it is destined to dl recaivers within the same locdl
network.

Organizationrefers to a set of agents.

Indtitution refers to a set of the basic eement required to build a particular type of
organization consisting of gods, roles, rules and protocols.

Reorganization refers to a Situation where the previous organization structure is not
efficient to succeed the mission.

Group refersto a set of agents who agree to use the same multicast address to subscribe
group message.

Time-To-Live (TTL) refersto the number of hops that multicast message is dlowed to
remain in the network beforeit is discarded by the router.

2.2 Overview

ThisMSE project is part of the research project “ Autonomous Reorganization of
Cooperative Robotic Teams for Robust Performance” supervised by Dr. Scott Del_oach.
The main focus of this research isto provide autonomous cooperative robotic teams with
enough knowledge of their team gods and organizationa structure to dlow them to
autonomoudy organize and reorganize to achieve their team god in the face of changing
environmental conditions and individua team member failures

The main focus of this MSE project is on extending agentMom capability to manage
unicast, multicast and broadcast communication and to provide secured communication
such as message encryption and decryption. Currently, agentMom1.2 only supports
unicast communication without multicast broadcast and security. There are many
advantages in using broadcast/multicast communication in multi-agent systems
environment. Firgt of dl, when there are many agents in the system and the use of
network bandwidth is criticd, then sending multiple copies of the same message to each
recelving agent may not desirable. Broadcast or multicast communication can save
network bandwidth by sending a Sngle message destined for multiple receiving agents.
Secondly, when an agent has to send the same message to hundreds of agent, then this
agent may not be able to do anything ese, but sending and receiving messages. Broadcast
and multicast techniques can reduce agent’ s workload. Furthermore, in the Situation
where the sender does not know the address of al agentsin the system, sender can
choose to multicast or broadcast the message to find agents on sarvice. Inthe
bidding/marketing-based technique, agents may broadcast or multicast messages to other
agents for some services. The recipients of these messages evaluate those requests, and
then submit bids with directed message to the originating agents. The originaing agents
use thisinformation to choose the appropriate agent to do the jobs, and then send directed
message back to the desired agents. Lastly, there are many situations that need to divide
agents into different groups such as search group and rescue group. Agents may want to
recelve messages only from the group they belong to. Multicast communication supports
this implementation.

In amulti-agent system, security is also an important issue when message is sent over
a public network such as Internet. It is undesirable if someone who is not specified to
recelve message can see the content of it. Message encryption can prevent this Situation.

Therefore, integrating broadcast/multicast communication and security features to
agentMom can provide a more flexible way for communication in multi-agent systems.

2.3 Goal

Integrate multicasting, broadcasting and secured communication capability in
agentMom in order to provide more efficient and effective way for communicationin
multi-agent environment.

2.4 Purpose

1.

2.

7.

Enable agents to broadcast a message to dl the agents within the same locdl
network.

Enable agents to multicast amessage to al the agents within the same multicast
address.

Allow agents to choose among unicast, multicast and broadcast communication.
Allow agentsto join and leave multicast group

Reduce network bandwidth from multiple copies of the same message by using
multicast and broadcast communication.

Reduce agent’ s workload by reducing the number of sending and receiving
messages.

Provide message encryption and decryption techniques.

2.5 Feature

1.
2.

Support unicast, multicast and broadcast communication.
Allow agent to choose which communication method to be used
(unicagt/multicast/broadcast) to fit the needs.

3. Allow agent to join and leave multicast group.
4.

Allow agent to choose to encrypt or not to encrypt message.

2.6 Risk

1.

2.

Reliable message ddlivery — multicast/broadcast packets are delivered with best
effort. Thus, a packet may be delivered to al specified agents or none.

Security — we provide some basic mechanisms for security such as message
encryption. However, there is no guarantee that the others cannot decrypt the
encrypted messages.

2.7 Direction

1.

Rdiable message ddivery — scalable reliable message ddlivery is an important
issue in multicast and broadcast communication. It isahot research areain
communication network and there is no single solution to this problem. Thus, this
can be further in the future work.

FIPA Agent Communication Language (ACL) — this project can be further to
conform to FIPA ACL specification, including FIPA ACL messages represented
in XML.

2.8 Environment

1.
2. Raiond Rose 2000 will be used for cregting various object diagrams..

3.

4. This software package will be tested under Microsoft Windows XP/2000, Linux

5.

This software package will be compiled usng Java 1.4.2.
Eclipse IDE 2.1 will be used for coding the software package.
Debian Linux and Solaris 9.

USE 2.0 will be used for modding the formd specifications, usng UML/OCL
methodol ogy.

CHAPTER 2 - SOFTWARE REQUIREMENTS SPECIFICATION

1 Introduction
This section provides an overview of this project.

1.1 Purpose

The purpose of this document is to describe functiondity and behavior of the new
agentMom framework. This document isintended to be viewed only by project advisor
and committee members,

1.2 Scope

This document covers the software requirements for the project “Applying
Broadcasting/M ulti casting/Secured Communication to agentMom in Multi- Agent
Systems’.

1.3 Definitions, Acronym & Abbreviations

agentMom 1.2 refers to current implementation of agentMom

New agentMom refersto this project, including agentMom with cgpability of
broadcasting, multicasting and secured communication

Unicast refers to one-to-one communication in such away that a packet originates from a
gngle Internet hogt, and it is destined to a unique location of another Internet host.
Multicadt refers to one-to-many communication in such away that a packet originates
from asngle Internet hogt, and it is destined to multiple receivers within the same
multicast address.

Broadcast refers to one-to-many communication in such away tha a packet originates
from asingle Internet hodt, and it is destined to al receivers within the same local
network.

Organizationrefersto a set of agents.

Reorganization refers to a Stuation where the previous organization structure is not
efficient to succeed the mission.

Group refersto a set of agents who agree to use the same multicast address to subscribe
group message.

Time-To-Live (TTL) refersto the number of hops that multicast message is dlowed to
remain in the network before it is discarded by the router.

1.4 Overview

The remainder of this document provides a greater detall functiondity and
requirement of the software. Section 2 describes product perspective, overal
functiondity, intended users, congraints and assumption of this software. Section 3
provides generd Use Cases and specific requirement of this software.

2 Overall Description
This section provides an overview of the project functionality and factors that affect
this project and its requirements.

2.1 Product Per spective
This project will be aframework that provides reusability of agent’s communication.
It isimplemented in Java and provides the basic building blocks for building agents,
conversations between agents, and the message that are passed in the conversations.
211 Software Interface —javaverson 1.4.0 isrequired to use the software.
2.1.2 Communication Interface — TCP/IPisused in order to send unicast message.
Multicast protocol is used in order to send multicast message. UDPisused in
order to send broadcast message.

2.2 Product Functions

2.2.1 Enable agentsto broadcast a message to al the agents within the sameloca
network.

2.2.2 Enable agentsto multicast a message to dl the agents within the same
multicast address.

2.2.3 Enable agentsto unicast amessage to other agents within organization.

2.2.4 Allow agentsto choose among unicast, multicast and broadcast
communication.

2.2.5 Allow agentsto join and leave multicast group.

2.2.6 Provide message encryption and decryption techniques for secured
communication.

2.2.7 Allow agentsto choose to encrypt or not to encrypt message.

2.3 User Characteristics

Users who want to implement multi- agent systems based on this framework are
expected to have genera knowledge of Java programming, object-oriented programming
and Multi- Agent Systems Engineering Methodology.

24 Congtraints

24.1 Rdiable message ddivery — multicast/broadcast packets are ddlivered with
best effort. Thus, a packet may be delivered to al specified agents or none.

2.4.2 Security —we provide some basic mechanisms for security such as message
encryption. However, there is no guarantee that the others cannot decrypt the
encrypted messages.

2.4.3 Multicagt Protocol — in order to send multicast message, network environment
such as router, network card and operating systems must support multicast

protocol.
2.4.4 Broadcast Message — in many network, only systlem adminigtrator is alowed
to send broadcast message.

2.5 Assumptions and Dependencies
25.1 Weassume that each agent knows the address of destinating agentsin order to
send unicast message.
2.5.2 We assume that each agent has enough knowledge to decide the best way to
communicate with the other agents.
2.5.3 Inthe case of using secured multicast communication, we assume that there is
an agent whom each agent can request for the same encryption and decryption

key. This agent should maintain alist of agents who are dlowed to get the
keys.

254 Weassumethat each agent knows the multicast address in order to send
multicast message.

3 Specific Requirements
This section provides dl of the project requirements in detail.

3.1 Use cases
Use Case 1: Natify join/leave multicast group

Agent_B
eave %

En pt \esg De ryptM 9

e

Agent_A

Transmit_join

Figure 3. leave/join

1. Messageisencrypted or Message is not encrypted.

2. An agent sends notify to join/leave multicast group.

3. Message isdecrypted only if Message is encrypted.

For example, Agent B and Agent_D belong to the same group, and then Agent B
wants to leave the group and Agent A wantsto join the group. In this Situation, when
reorganization occurs, Agent A who is previoudy not part of the group may send notify
message to join the group, and Agent B who is previoudly part of the group, may send
notify message to leave the group. For ingance, Agent_B suffersafalure in one of its
capabilities and does not want to receive any further message from the group. Agent_ A
who may have capability to substitute Agent_B is needed to be part of the group. This
involves sending natify of join and leave the group.

Use Case 2: Send/Receive Unicast

o CO

Encrypt_Mesg Decrypt_Mesg

=<

Transmit_Message
Agent_A B ? Agent_B

Figure 4. unicast

Message is encrypted or Message is not encrypted.
An agent sends unicast message to another agent.
Another agent receives message.
. Message is decrypted only if Message is encrypted.
In this Stuation, Agent_A wants to communicate with Agent_B. Thisdirect
communication can happen between any two agents within organization.

pWODNPE

Use Case 3; Send/Receive Multicast

Encrypt_Mesg Decrypt_Mesg / \

Agent_C

Transmit_Multicast

Figure 5. multicast

Message is encrypted or Message is not encrypted.
An agent sends multicast message to the group (multicast address).

Other agentsin the group receive message.
Message is decrypted only if Message is encrypted

EaN N

In this Stuation, Agent_A wants to send a message to everyone within the group,
assuming that Agent_A, Agent_B and Agent_C subscribe to the same multicast address.
Thisinvolves the multicast communication since other agents who do not belong to the
group cannot receive this message. For instance, an agent may want to inform everyone
in the group when the assigned tasks are completed. Thisis more effective than in unicast
communication since only one copy is sent. Also, using bidding/market-based protocols
fit well with this kind of communication. An agent may request abid from other agents
for doing some tasks.

Use Case 4: Send/Receive Broadcast

E % Agent_C

Agent_A

Agent_B
Transmit_Broadcast

Figure 6. broadcast

1. An agent sends message to everyone in the same loca network

2. Other agent in the same locd network receive message

In this Stuation, Agent_A wants to send a message to everyone within the same loca
network that agent A belongsto. This involves the broadcast communication since any
agent in the same locd network as Agent_A can receive this message. For ingtance, when
anew agent who does not previoudy exist in that local network wants to announce the
exigence to other agents.

3.2 Specific Requirement

3.2.1 Unicast Communication
3.2.1.1 *agentMom shall support the ability to send unicast message.
3.2.1.2 *agentMom shal support the ability to receive unicast message.
3.2.1.3 Unicast message shdl only be recelved by the specified address.
3.2.1.4 Unicast message shdl arrive at the specified address and in order.

3.2.2 Multicast Communication
3.2.2.1 *agentMom shdl support the ability to send multicast message.
3.2.2.2 *agentMom shal support the ability to receive multicast message.
3.2.2.3 *agentMom shall support the ability to send request to join multicast

group.

10

3.2.2.4 *agentMom shall support the ability to send request to leave multicast
group.
3.2.2.5 agentMom shdl not dlow receiving multicast message from a group
before joining that multicast group.
3.2.2.6 agentMom shdl not alow receiving multicast message from a group after
leaving that multicast group.
3.2.2.7 agentMom shdl support the ability to st time-to-live for multicest
message.
3.2.2.8 agentMom shd|l support the ability to set multicast address and port for
sending and recelving multicast message.
3.2.2.9 agentMom shd| support the ability to receive multicast message from
multiple groups.
3.2.3 Broadcast Communication
3.2.3.1 *agentMom shall support the ability to sent broadcast message.
3.2.3.2 *agentMom shal| support the ability to receive broadcast message.
3.3.3.3 *Broadcast message shall be sent to al possible hosts under the same local
network.
3.2.4 Security
3.2.4.1 *agentMom shall support the ability to encrypt unicast message.
3.2.4.2 *agentMom shdl support the ability to decrypt unicast message.
3.2.4.3 agentMom shdl alow an agent to decide whether or not to encrypt a
message.
3.2.4.4 agentMom shd| automatically decrypt encrypted message.
3.2.4.5 agentMom shal support the ability to encrypt multicast message.
3.2.4.6 agentMom shdl support the ability to decrypt multicast message.
3.2.5 Architecture
3.2.5.1 *agentMom with shall support the use of the architecture that agent
directly controls the conversations.
3.2.5.2 *agentMom shdl support the use of the architecture that agent’s
components control the conversations.
3.2.6 Compatibility
3.2.6.1 The new built agentMom shall be compatible with the agentMom 1.2.

Note: The* * ” indicates Driving Requirements that need to be demonstrated by the end
of phasell.

11

CHAPTER 3-PROJECT PLAN

1 Introduction

This section provides an overview of project plan

1.1 Purpose

The purpose of this document is to provide cost estimation and architecture
elaboration plan for the project “ Applying Broadcasting/M ulticasting/Secured
Communication to agentMom in Multi-Agent Systems’. This document is intended to be
viewed only by project advisor and committee members.

1.2 Scope

This document covers project plan for the project “Applying
Broadcasting/M ulticasting/Secured Communication to agentMom in Multi- Agent
Sygems’, including time frame, cost estimation and architecture eaboration plan. Time
frame provides the phases, iterations and milestones that will comprise the project. Cost
estimation provides a detailed estimate on the Size, cost and effort required for the
project. Architecture elaboration plan provides details of activities and actions that must
be accomplished prior to the Architecture presentation.

2TimeFrame

Deiverable

Phase | : Objectives

Project Overview 1.0

Software Requirements Specification
Project Plan

Software Qudity Assurance Plan
Prototype |

MSE homepage

First presentation

Phase |1: Architecture

Update Documents

Formal Requirement Specification 0.1
Architecture Design 0.1

Test Plan 0.1

Forma Technical Inspection 0.1
Executable Architecture Prototype 0.1
Forma Requirement Specification 1.0
Architecture Design 1.0

Test Plan 1.0

Forma Technica Inspection 1.0
Executable Architecture Prototype 1.0
Second Presentation

Phase |11 : Implementation

Edtimated Date
March - April

March 24 — March 30
March 24 — March 30
March 31— April 06
March 31— April 06
March 31— April 06
April 07 — April 13
April 14 — April 25

April - November

April 26 — April 30

May 19 —May 25

May 26 — May 31

June 01 — June 07

June 08 — June 14

June 08 — June 14

September 01 — September 07
September 08 — September 14
September 15 — September 21
September 22 — September 28
October 01 — October 15
November 17 — November 21

November — February

12

Update Documents November 22 — November 30

Component Design December 01 — December 07
Fina Product December 08 — December 31
Javadoc December 08 — December 31
Assessment Evaduation January 01 — January 18

User Manual January 19 — January 25
Project Evauation January 19 — January 25
References January 26 — January 31
Forma Technica Inspection Letters January 26 — January 31

Fina Presentation February 24 — February 28

For agraphica representation of the proposed project plan, consult the included Gantt
chart.
3 Cost Estimation
3.1 Function Point

Firg, the different types of program festures must be identified. These include the
following:

a) Internd Logicd Files— A fileisamgor logica group of user data or control
information, which could be in alarge database or a separaefile. Thisis zero for the
agentMom.

b) Externd Interfaces Files— Normaly considered files passed or shared between
syslems. Thisis zero for the agentMom.

c) Externd Inputs— Unique user data or user control input that enters the externa
boundary of the system and adds or modifiesalogicd internd file. The inputs are
unicast message, multicast message, broadcast message, secured multicast message
and secured multicast message. Thus, there are five externd inputs.

d) Externd Outputs— Each user data or control output type leaving the externa
boundary of the system is counted. The outputs are unicast message, multicast
message, broadcast message, secured multicast message and secured multicast
message. Thus, there are five externa outputs.

€) Externd Inquiry — Each input-output combination is counted, when input causes an
immediate output. Thisis zero for the agentMom.

Total Unadjusted Function Points

Type Complexity Function Points
Low | Average | High
Internd Logica Files 0
Externd Interfaces Files 0
Externd Inputs 5%3 15
Externa Outputs 5x4 20
Externd Inquiry 0
Total 35

13

3.2CoCcomMOll
Estimation is based upon the Organic mode in the Constructive Cost Model
(COCOMO) cost modd developed by Barry Boehm. Since this project isfairly smple
and very flexible, we can assume using the Organic mode. Also, origind COCOMO
modd is used since COCOMO Il is more appropriate with large team development
project with large number of developers.
The COCOMO estimating equations fallow this smple form:
Effort = CI*EAF*(Size)™
Time = C2* (Effort)™
where:
Effort = number of person-months
C1 = congtant scding coefficient for effort
C2 = acongant scding coefficient for schedule
P1 = an exponent that characterizes the economics of scae inherent in the process
used to produce the end product
P2 = an exponent that characterizes the inherent inertiaand pardldismin
managing a oftware development effort
EAF = an effort adjustment factor that characterizes the domain, personndl,
environment, and tools used to produce the artifacts of the process
Size = size of the end product (in human-generated source code), measured by the
number of ddlivered source indructions
Time = totd number of months
Asin Organic mode,
Cl=32
C2=25
P1=1.05
P2=10.38

Since EAF vdueis difficult to determine, the EAF effect is not consdered at this
point. For ingtance, the EAF of Programmer capability isrange from 1.42—0.70. It is
hard to specify the vdue when thereis no database that refers to the number of yearsin
programming experience for each value. The estimation of Sze is defined as human-
generated source line of code, excluding comments. The SLOC per Function Point for
javais46, so SLOC is 35 x 46 = 1610.

Therefore, the totd effort and time are:
Effort = 3.2(1.610)% = 5.3 person-months (4.9 previoudy)
Time = 2.5%(5.3)%% = 4.7 months (4.6 previoudly)
Productivity = 1610/4.7 = 343 LOC-month (330 previoudy)
Staff = 5.3/4.7 = 1.13 person (1.07 previoudy)
Asthe number shown above, this project requires one person to complete in 4.7
months with 343 SLOC per month, or one person works 4.7* 152 = 715 hours

Note: As described by Boehm, there are 152 working hours in a month. Therefore, time
to complete this project may vary depend on number of working hours in amonth.

14

4 Architecture Elaboration Plan
4.1 Vison Document (revision)

After thefirgt presentation, suggestions shal be provided by the committee and these
shdl be used to revise the Vision document. The revised document shdl be approved by
the major professor. Vison document consists of Project Overview document and
Software Requirements Specification document.

4.2 Project Plan (revision)

After thefirgt presentation, suggestions shall be provided by the committee and these
shall be used to revise the Project Plan document. The cost estimation shall be updated as
appropriate. Also, the implementation plan shal be included. The revised document shall
be approved by the mgjor professor.

4.3 Formal Requirement Specification

The dass diagram from architecture design shdl formaly be specified using
UML/OCL methodology. The tool USE, a UML-based Specification Environment, shall
be used. For more information about USE, please refer to
“www.db.informeatik.uni-bremen.de/projectsUSE/ “

4.4 Architecture Design

The completed class diagrams and use cases diagrams shall be produced and well
document. This design shdl be implemented based upon the class diagram and use cases
presented in Vison document. Also, this architecture design shdl be undergo forma
technica ingpection.

4.5 Test Plan

Test plan shall be produced to show that al requirements specified in vison
document are satisfied. Unit testing, integration testing, and system testing shl be
conducted. Unit testing shal be class-based. Two or more related classes shdl be used for
integration testing. Findly, the whole system shal be used for system testing. Reliability
ghdl involve in the testing to measure successful rate of message ddlivery.

4.6 Formal Technical Inspection

The architecture design shal be undergo formd technica ingpection. The group of
ingpector conssts Madhukar Kumar of and Achargporn Pettaravanichanon. The
developer shal develop aforma checklist and provideit to inspectors. The ingpectors
shdl provide aformd report on the result of their ingpection during Phase 111.

4.7 Executable Architectur e Prototype

All driving requirements identified in vison document shdl be implemented. This
prototype shal be implemented based on the first prototype from phase |. Specificdly,
The executable architecture prototype shdl be integrated into agentMom, and it shall
have dl driving requirements capabilities.

15

CHAPTER 4 -SOFTWARE QUALITY ASSURANCE PLAN

1 Purpose

The purpose of this document is to specify how the software quality assurance plan
will be handled in the software development life-cycle of the project “ Applying
Broadcasting/M ulticasting/Secured Communication to agentMom in Multi- Agent
Systems’. Theintended use of thisto software project is to enhance the pre-exist
agentMom (agentMom 1.2) to be capable of providing multicasting conversation and
basic message encryption for security purpose. This document is based on the IEEE
standard for Software Quality Assurance Plan, |IEEE Std 730.1-1995. This document is
intended to be used in partia fulfillment of the requirements for the Master of Software
Engineering Project’ s Portfolio. Furthermore, this document will be reviewed and
evauated by the mgjor professor and the supervisory committee.

2. Management
2.1 Organization
Supervisory Committee conssted of :
Dr. Scott A. Del.oach
Dr. David Gustafson
Dr. William Hankley
Major Professor:
Dr. Scott A. Del.oach
Developer:
Chairo] Mekprasertvit
Formal Technica Inspector conssted of
Madhukar Kumar
Acharaporn Pattaravanichanon
2.2 Responsibilities
2.2.1 Supervisory Committee
Primary responghilities include reviewing each milestone ddiverable at the
requirements, architecture, and implementation phases. After reviewing, each
committee member should provide feedback and suggestions to the software
devel oper.
2.2.2 Major Professor
In addition to the respongibilities as one of the committee member, the major
professor will supervise and evauate dl artifacts submitted by developer. Reviews
and wakthroughs of related materids will be conducted on weekly basis.
2.2.3 Software Developer
Since the project is being developed individualy, developer is responsible for
ensuring quaity of the project. The software developer is aso respongible for
producing the required artifacts for M SE projects.
2.2.4 Forma Technica Inspectors
The mgor responsbility of ingpectorsisto provide aformd report on their
inspection result from architecture design artifact produced by developer.

16

Furthermore, the following tasks will be conducted in order to ensure quality
assurance:

1. Driving Requirements. The developer should ensure that the software requirement
specification in the vison document clearly states the functiondity of software and
unambiguoudy declares the requirements that must be satisfied. In addition, descriptions
of the scope should clearly outline what the software will dlow and not alow.

2. Desgn: The developer and mgjor professor will conduct reviews and analyses of
the congtruction of the software. Strengths and weaknesses of various design techniques
will be discussed and scrutinized.

3. Implementation: Informal code reviews will be conducted by the developer on a
regular basis to ensure congstency with the design and the detection of any error. Also,
JavaDoc will be produced for purpose of maintainability and future work.

4. Teding: Developer will conduct tests as presented in the Software Test Plan to
ensure the requirement satisfaction and rdiability of the software.

3. Documentation
The following documentation will be generated and updated throughout the duration
of softwarelife cycles
Phasel:
1.) Vison Document - provides detailed description of the entire project, goals of
the software, congraints and requirements for the software to satisfy.
2.) Project Plan - illusrates the mgor milesones and provides a rough timeine
for the project and estimation on the size and effort of the project.
3.) Software Qudity Assurance Plan — provides plan for software qudity
assurance
Phasell:
1.) Forma Requirement Specification — UML/OCL methodology will be used to
produce this document.
2.) Test Plan - provides description of test cases during testing
3.) Architecture Design — Object Model and Use Cases will be produced.
4.) Forma Technica Ingpection - two MSE students will participate in formal
technical ingpection, and developer will dso provide an ingpection checklist.

Phasellll:
1.) User Manud - ingtructions on how to use software
2.) Final source code - actua implemented documented source code
3.) Assessment Evauation - assessment of rdiability and performance of
software
4.) Project Evauation - review of the entire project

4. Standar ds, Practices, Conventions and metrics

4.1 Standards

= Documents— MSE portfolio requirements, CIS Dept., Kansas State University
= Coding—Javal4.0 (commenting will follow JavaDoc standards)

» Teding— IEEE Standard for Software Test Documentation

4.2 Metrics

17

= SLOC —source lines of code will be primarily used for measuring the Sze of the
software
= COCOMO I —cost egtimation will be calculated based on COCOMO | mode!.

5. Reviews and audits

Two forma MSE dudents will peform a formd technica ingpection on the
architecture design document and provide a forma report. Also, each committee member
will review the produced documentation and make comments and suggestions during
each presentation. Each milestone must be approved by each committee member to
proceed to the next miletone. Each milestone is indicated by the presentation of each
phase. There are three presentation described as follow:

Presentation | a the end of phase | includes project overview, software requirements,
project plan, SQA plan and prototype demonstration.

Presentation |l a the end of phase Il incdudes formd requirement specification,
architecture design, test plan and architecture prototype demongtration.

Presentation 111 a the end of phase Ill includes component design, assessment
evaduation, project evauation, result from formd technica ingpection and completed
software demongtration.

6. Problem reporting

If any problems are encountered throughout the duration of the project, the software
developer can report and discuss the problems with the mgor professor. If any conflicts
or problems are discovered by one of the committee members during a presentation, the
developer will then correct the errors.

7. Tools, Techniques and M ethodologies

For determining whether the software requirements were satisfied, a software test
plan will be written during phase Il. This plan will provide an overview of the
methodologies, timetables, and resources for testing the software. Testing will commence
in three primary ways.

7.1 Unit Tedting

Individua dlasses will be tested to ensure religbility and functiondity within a unit-
level. Furthermore, testing module will be created before the tested code to ensure that
the code is testable. Junit 3.8 will be the toal to perform testing. Unit testing will be
performed before a pha and beta release.
7.2 Integration Testing

Severd classes will be tested together to ensure sufficient execution and compliance
with the requirements after integration. Integration testing will be performed before beta
releasse.
7.3 System Tedting

The whole system shd| be used for system testing to ensure dl requirementsis
sdidfied, and rdiability will be included in the testing to measure successful rete of
message ddlivery. System testing will be performed before beta release.

The following tools are used in creating, testing and debugging software

18

= Java1l.4.2 will be the language used for coding the software.

= USE 2.0 will be usad for modeling the forma specifications, usng UML/OCL
methodol ogy

» Rationd Rosewill primarily be used for producing object models.

» Eclipse IDE 2.1 will be used for coding the software package.

= This software package will be tested under Microsoft Windows XP/2000, Linux
Debian and Solaris 9.

8. Media control

All the required documentation generated throughout the course of the project is
available at the software developer’ s persond website
(http://www.cis.ksu.edu/~cme6556).

Upon project completion, a CD containing the entire project document, prototype,
and fina product is created.

9. Document and Softwar e Version Control

Each document verson or software version is incremented by 0.1 after it is gpproved
by mgor professor. Also, verson is move to the next digit after it is gpproved by dl
committee members. For example, verson 1.2 will be changed to verson 2.0 after al
committee gpprova or verson 1.2 to 1.3 after major professor approval.
Alphaverson is released after the software is passed dl unit tests.
Beta verson is released after the software is passed dl unit tests, integration tests and
system tests. Final version isreleased after the software is approved by major professor.

10. Training

CIS 740 Software Engineering

CIS 748 Software Management

CIS 771 Software Specifications

CIS 890 Agent-Oriented Software Engineering

19

CHAPTER 5—- ARCHITECTURE DESIGN
Architecture Design

1 Introduction

The purpose of this document is to provide the architecture design including class
diagram, description of class diagram, sequence diagram and description of class diagram
for the project “ Applying Broadcasting/M ulti casting/Secured Communication to
agentMom in Multi-Agent Systems’. The architecture design of this project is defined by
driving requirement stated in Software Requirements Specification verson 1.0. This
document isintended to be viewed only by project advisor and committee members.

20

2. ClassDiagram
2.1 agentMom 1.2

Figure 7 Class Diagram for agentM om1.2
Figure 1 shows the class diagram of agentMom verson 1.2. Thisisthe verson
that the project is based on. It consists of seven classes with four abstract classes,
MomObject, Agent, Conversation and Component, and three concrete classes, Message,
Sorry and MessageHandler.

21

2.2 New agentM om

Figure 8 Overall Architecture Design
Figure 2 shows the overal design of new agentMom architecture with inheritance

and association reationship. It conssts of 16 classes with nine abstract classes,
MomObject, Agent, Conversation, SecureUnicastConversation, MulticastConversation,
SecureM ulticastConversation, BroadcastConversation, AgentConversation and
Component, and seven concrete classes, Message, Sorry, MessageHandler,
MulticastHandler, SecureUnicastHandler, SecureMulticastHandler and
BroadcastHandler.

2.3 Associations
From Figure 2, associations are shown with roles and multiplicities below:

agent unicastListener

Agat o1 o1 MessageHandler
agent multicast Listener)

Agent MulticastHandler
0..1 0..N

22

agent broadcastL istener

Agent o1 o1 BroadcastHandler
agent secureUnicastListener

Agent o1 o1 SecureUnicastHandler
agent secureM ulticastListener

Agent 01 on | SecureMulticastHandler
createdM essage createdByUnicast

Message o1 o1 Conversation
createdM essage createdByMulticast

Message o1 o1 | MulticestConversetion
createdM essage createdBySecured

Message 01 o1 SecureUnicastConversation
createdM essage createdBySecureM ulticast

Message 01 o1 SecureMulticastConversation
createdM essage createdByBroadcast

Message o1 o1 | BroadcastConversation

2.4 New Classes
Figure 3, new classes added to agentMom are shown with attributes and method

below:

23

Figure 9 Nine New Classesin agentMom

24

Figure 3 shows the details of new nine classes added to agentMom 1.2. There are
five new abdtract classes, including AgentConversation, MulticastConversation,
SecureUnicastConversation and BroadcastConversation and
SecureMulticastConversation. Furthermore, there are four new concrete classes,
including MulticastHandler, SecureUnicastHandler, BroadcastHandler,
SecureMulticastHandler.

2.5 Class Diagram Description

MomObject: Abstract class that both Agent and Component inherit from. It has two
required parameters that must be set for each agent to use agentMom package, name of
the agent and port used for unicast conversation.

Agent: This abdract class defines the minimum requirements for an agent to use
agentMom package.

MessageHandler: This concrete classis used for listening for initid message when other
agents want to start a unicast conversation.

MulticastHandler: This concrete classis used for ligtening for initid message when other
agents want to start a multicast conversation. It dso performsjoining multicast group to
receive multicast message from the group. Multicast group is defined by Internet address
dass D. Furthermore, it performs actua receiving multicast messages, and then adds
messages to the queue that will be fetched by MulticastConversation class.
MulticastConversation then indirectly receives message.

BroadcastHandler: This concrete class is used for listening for initid message when other
agents want to start a broadcast conversation. It aso performs actua receiving broadcast
messages, and then adds messages to the queue that will be fetched by
BroadcastConversation class. MulticastConversation then indirectly receives message.

SecureUnicastHandler: This concrete classis used for ligening for initial message when
other agents want to start a secured unicast conversation. It uses the Secure Socket Layers
(SSL) for secured communication.

SecureM ulticastHandler: This concrete dass is used for ligening for initiad message
when other agents want to start a secured multicast conversation. It can also perform
message encryption and decryption. This class works in the same way as
MulticastHandler. The different is that it decrypts the received message before it adds
message to the queue.

Component: This abstract classis used for interna communication of components within
an agent.

AgentConversation: Absiract class that unicast, multicast, broadcast and secured

conversation inherit from. Basicdlly, dl conversation classes are generdization of this
class.

25

Conversation: This dostract class provides unicast communication among agents. It
carries out the message passing between agents. Unicast conversation is controlled by the
implementation class of this class.

Message: This dlass defines the field used in the message for agent communication.

MulticastConversation This abgtract class provides multicast communication. It is used
for sending and recelving multicast message. This class indirectly receives message from
the message queue controlled by MulticastHandler. Multicast conversation is controlled
by the implementation class of this class.

BroadcastConversation: This abstract class provides broadcast communication. It isused
for sending and receiving broadcast message. The message sent by this classis
broadcasting to every host under the same loca area network as the sender. This class
indirectly receives message from the message queue controlled by BroadcastHandler.
Broadcast conversation is controlled by the implementation class of this class.

Sorry: Thisclassisaconcrete class of conversation class. It isadefault conversation
class that sends message when an agent receives unknown conversation.

SecureUnicastConversation: This abstract class provides secured unicast communication
among agents. It carries out the message passing between agents using SSL
communication. SecureUnicastConversation is controlled by the implementation class of
thisclass.

SecureMulticastConversation: This abstract class provides secured multicast
communication. It isused for sending and recelving secured multicast message. This
classindirectly recelves message from the message queue controlled by
SecureMulticastHandler. Secured multicast conversation is controlled by the
implementation class of this class. This classworks in the same way as
MulticastConversation. The different is that it encrypts the message before sending out.

3. Sequence Diagram

This section shows the sequence diagrams of the basic scenarios of agent
communication including unicast, multicast and broadcast conversation.
3.1 Unicast conver sation

In Figure 11 shows how agent may exchange message using unicast conversaion.
On one side, the agent A2 creates the MessageHandler H1 that creates the ServerSocket
class SS2 and then waits for a connection from other agents. When the agent A1 want to
communicate with A2, Al starts the unicast conversation with A2 by creeting the
Conversation object C1 that controls the unicast conversation between agents.
Conversation class C1 then creates the Socket object for sending and receiving unicast
message. First, Conversation C1 request for a connection with the ServerSocket SS2. The
ServerSocket SS2 simply accepts it and then creates the Socket S2 that is connected to
S1. After both Socket S1 and S2 are connected, the MessageHandler H1 cdlls the
recelveMessage method in A2 with the created socket. Then, Agent A2 creates the

26

Conversation C2. At this point, conversation is controlled by two Conversation classes
C1 and C2. Messages are passing back and forth until the conversation is completed as
defined in the each Conversation class. Findly, each conversation closes the socket at
each sde.

AL: Agent cL S1: Socket } S2: Socket c2: i ss2 HL: A2: Agent |
Conversation | Conversation |, ServerSocket || MessageHandler|} | |
I create) | I T “creae) |
L >l I _create) Jde: |
| " accept()
create() |) . . .
L= Makirhg connection witH SS2
creake()
Socket S2
recejveM ge(Sockey S2)
reate(Socket Sp :
ObjectOutpytStream.write(\ ge M1)
Ohjg chutputStream read()
M1 passed by valye|to S2
Message M1

ObjectOutpytStream.write(Message M2)

ObjdcfOutputStream.read()

Message M2 passed by valug lo S1

Message M2 |m— et —————— N IR

. . . I
: Iteration [while conversation not end] |
I

—_—————r— e e

Conversations exchange message
until the conversation is finished.
Each conversation may perform read
and write in any order, e.g. write,
write, read and write. When
conversation is finished, each side
close socket connection

close()

. close()

—————— e — o

Figure 10 Starting Unicast Conver sation

3.2 Multicast conver sation

Multicast conversation can be categorized into three scenarios, join group, leave
group and conversation.

In Figure 12 shows how an agent may join the multicast group. To join the group,
Agent Al creates the MulticastHandler H1. The MulticastHandler H1 then crestes the
MulticastSocket S1 and cals joinGroup method in the MulticastSocket classto notify the
router that this machine want to join the multicast group. The MulticastHandler H1 then
sends ajoin message to al agents previoudy exigting in the group. In this case, the
MulticastHandler H2 belonging to Agent A2 receives the join message, and then cdllsin
receiveM ulticastJoin method in the Agent A2.

27

Al: Agent H1: Si: S2: S2. A2: Agent
MulticastHandler || MulticastSocket || MulticastHandler || MulticastHandler

4 create) | create() |

I

>

- i

joinGroup |L'_| I
|
!

_________ 9'...1

|
|
|
I
spt dJoin(Message:j ih) I

read()

T ! <

(=g
Messade join passed by valu¢ to S2 .

Message join

————

receivgMulticastJoin(Message join)

2T

Ll

Figure 11 Join Multicast Group

In Figure 13 shows an agent may starts the multicast conversation with the group.
Agent Al crestes the MulticastConversation C1. MulticastConversation C1 then send the
gtart conversation message to the group. In this case Agent A2' s MulticastHandler
recelve arequest to start a new conversation. It calls the receiveM ulticastConversation
method in Agent A2. Then Agent A2 tarts a new MulticastConversation corresponding
to the request. At this point, conversation is controlled by the MulticastConversation class
a each sde of Agent. Messages are passing back and forth within the group until the
conversation is completed as defined in the each MulticastConversation class.

28

i AL Agent I Vi:Vector HL cL:] Si: s2: H c2: H2: |i V2: Vector A2 Agent |
1 [Multic: MulticaslHand\erI |

MulticastHandler! Mu\licaleonversalion||MullicaslSockel stSocket | MulticastConversation il
L - I L . B - T
] (™}
create()

end(Message start;

Messge start passed by valileho's2

TecejvgMulticastConvessation(M

yol

art)

create(Message start)

send(Message M1),

M1 Message th] passed by value to $1

add(Message MJ)
T~
r rénjove()

M1

send(Message M2)

Messapg M2 Passed by valueltd 52 Messade M2

remove

Message'M2

I, R D, d__

Conversations exchanges message until the
conversation is finished. Each conversation |
may perform read and write in any order, eg. :
write, write, read and write. |

Figure 12 Multicast Conver sation

In Figure 14 shows how an agent may |leave the multicast group. To leave the
group, Agent Al cdls setleave method in MulticastHandler H1 and passes the value
true. The MulticastHandler H1 then send aleave message to the dl agentsin the group by
cdling the send method in MulticastSocket. In this case, the Agent A2's
MulticaastHandler receives the leave message and then cdls the receiveMulticastL eave
method in the Agent A2. Findly, the MessageHandler H1 calls leaveGroup method in the
MulticastSocket class to notify the router that this machine wants to leave the multicast
group, and then close the multicast socket.

29

Al: Agent

H1:
MulticastHandler

S1:
MulticastSocket

| setLeave(true) }

conversation is completed as defined in the each BroadcastConversation class.

sendLeave(Messagelehve)

leaveGroup()

P |
I

[

S2:

MulticastSocket

read()

H2:
MulticastHandler

r
Messhge leave passed by \la ue to S2

————

Message leave

receiveMulticastLeave(Mess

A2: Agent

age leave)

Figure 13 Leave Multicast Group
3.3 Broadcast conver sation
In Figure 15 shows how an agent may start the broadcast conversation with other
agents on the same local network. Agent A1 creates the BroadcastConversation C1. The
BroadcastConversation C1 then send the start conversation message to al agent under the
sameloca network. In this case Agent A2's BroadcastHandler receive arequest to start a
new conversation. It cals the receiveBroadcastConversation method in Agent A2. Then
Agent A2 starts a new BroadcastConversation corresponding to the request. At this point,
conversation is controlled by the BroadcastConversation class a each side of Agent.
Messages are passing back and forth within the agentsin the same loca network until the

30

L

| AL:Agent || HI1: | ClL: I S1: 1 S2: 1 C2: f H2: || V2:Vector || A2 Agent |
L |EroadcaslHandle] EroadcaslconversatiodQatagramSocket_I !BatagramS()cke_l! roadcastConversation| BroadcastHandle} 1 I |
|

reate() |

| read(Meskage start) |

end(Message start)

Message plart passed by value to S2 Message start

recejvgBroadcastConve}sation(Message|start)

create() i
[< |
|

send(Message M1

read(Megsage M1)

lue

Message M1

|
|
M1 passed by ¥
|
|
|

dd(Message M1

>
.I.I
removg() |
|
read() I Messagd M1 |
| I send(Message MZ)I I
T o | |
! Messade M2 qluzpassedbyvue L _l__
[. . .
T Iteration [while conversation not end)]
|
H -
! ! Conversations exchanges message until the
[

may perform read and write in any order, e.g.
write, write, read and write.

|
|
l

| : conversation is finished. Each conversation
|
|
|

Figure 14 Broadcast Conversation

31

CHAPTER 6 —FORMAL REQUIREMENT SPECIFICATION

1. Introduction
1.1 Purpose

The purpose of this document is to provide the forma requirement specification
of the project “ Applying Broadcast/M ulticast/Secured communication to agentMom in
Multi-Agent Systems’. This specification uses the UML/OCL methodology as specified
in the UML specification verson 1.5. The Object Congraint Language (OCL) isaforma
language used to express congraint and specify invariant for the system being modd. It
provides a precise and unambiguous specification of the system.

1.2 Scope
In the specification, we specify the pre and post condition of the interest
properties to ensure that these properties are hold in our system model. These properties
ae
1.) Unicast conversation
1.1) Only the specified address receives the unicast message.
1.2) Sent message is the same as received message
2.) Multicast conversation
2.1) Only the specified group receives the multicast message for that group
2.2) Sent message is the same as recelved message
3.) Broadcast conversation
3.1) Only the conversations holding the same broadcast address receive the
broadcast message.
3.2) Sent message is the same as received message
4.) Secured unicast conversation
4.1) Only the specified address receives the unicast message
4.2) Sent message is the same as recelved message

The properties are based on the driving requirement as stated in the Software
Requirement Specification verson 1.0. Furthermore, we use the UML- based
Specification Environment (USE) tool to check the type and syntax to ensure correctness
of the specification. Please refer to the file “agentMom _ocl.doc” in the included CD for a
full specification of the modd.

2 Formal Requirement Specification Descriptions

This section explains the unicast conversation and multicast conversation
gpecification in detall. Because unicast conversation and secured unicast conversation
specifications are dmost identical, only the unicast conversation specification is covered.
Alsp, it isthe same as multicast conversation and broadcast conversation specifications.

2.1 Unicast conver sation

The unicast conversation is named “Conversation”. The attributes of this class
are. m, localhost and connectionHost. The attribute mis a Message type, and it is used
for storing a message sent to another agent. The attribute Localhost is a String type of
Internet address of the agent. The attribute connectionHost is a String type of Internet

32

address of the connecting agent (receiver agent). Furthermore, the class and association
related to unicast conversation is shown below:

cl ass Conversation
attributes

m Message;

Local host: String;
connecti onHost: String;
connectionPort: |nteger;
oper ati ons

sendMessage(m Message)
recei veMessage(): Message
end

associ ati on Agent - Conversati on between

Agent [1] rol e agent

Conversation[0..*] role unicastConversation
End

associ ati on Construct Uni cast between
Conversation[0..1] role createdByUni cast;
Message[0..1] role createdMessage;

end

associ ati on Recei veUni cast between
Conversation[0..1] role receivedByUni cast;
Message[0..1] role recei vedVessage;

end

Findly, the pre and post condition related to this class is described below:

2.1.1 Only the specified address receives the unicast message.

context Conversation::sendMessage(m Message)
-- uni cast conversation associates with the Message paraneter

pre cond_1: self.createdMessage = m
-- Message nust be well|l defined before sending

pre cond_2: misDefined
-- Only the destined address and port receive the nessage.

post cond_3: Conversation.alllnstances->

exi sts(c: Conversation|
((c. Local host = sel f.connecti onHost

and

c.agent.port = self.connectionPort)
i mplies

c.recei vedMessage = m

and

(c.recei vedMessage = m

implies

(c. Local host = self.connecti onHost
and

c.agent.port =
sel f.connectionPort)))

33

This part of specification defines pre and post condition of the operation
sendMessage of the class Conversation. There are two pre-conditions and one post-
condition. The pre-condition “cond_1" states that the Message object m must be created.
The pre-condition “cond 2" dtatesthat the attributes of Message object m must be
defined. Findly, the post-condition “cond 3" states that there exist a Conversation object
that receives the Message object m, and the Internet address and port number of the
receiver must be the same as the address that sender connects to. Therefore, only the
specified address and port number receives the unicast message.

2.1.2 Received message is the same as sent message

- Receive unicast pre-post condition

- Received nessage is the sane as sent nessage

context Conversation::recei veMessage(): Message

- New received nessage is created
post cond_1: self.recei vedMessage. ocl | sNew = true

- New created recei ved nessage is the sanme as sent Message
post cond_2: Conversation.alllnstances->

exi sts(c: Conversation]|
((c.connecti onHost = sel f.Local host

and
c.connectionPort = self.agent. port)
i mplies

c. creat edMessage =
sel f.recei vedMessage)
and

(c.creat edMessage =
sel f.recei vedMessage

i mplies
(c.connecti onHost = sel f. Local host
and

c.connectionPort =
sel f.agent. port)))
- Result of receiveMessage()
post cond_3: result = self.recei vedMessage

This part of specification defines pre and post condition of the operation
recevieMessage of the class Conversation. There are three post-conditions. The post-
condition “cond_1" datesthat the received Message object is created during the
operation recelveM essage (Message is received from another agent). The post-condition
“cond 2" gtates that the new received Message object must be the same as the Message
object that is sent by the sender. The post-condition “cond 3" specifies the return result
of this operation. In this casg, it is the received message is returned. Therefore, the sent
message is the same as received message.

2.2 Multicast conver sation

The multicast conversation is named “ MulticastConversation”. The attributes of
this class are: multicastPort, m, join and multicastAddress. The attribute m isaMessage
type, and it is used for storing a message sent to another agent. The attribute
multicastAddress is a String type of multicast address of the group that agent subscribes

to. The atribute multicastPort is a Integer type of the port that multicast listening.
Furthermore, the association rdated to multicast conversation is shown beow:

cl ass Multicast Conversation
attributes

mul ti castPort: |nteger;

m Message;

j oi n: Bool ean;

nmul ti cast Address: String;
oper ati ons

sendMessage(m Message)
sendJoi n()

sendLeave()

recei veMessage(): Message
end

associ ati on Agent-Mil ticast Conversati on between

Agent[1] rol e agent

Mul ti cast Conversation[0..*] role multicastConversation
end

associ ation Construct Mul ti cast between
Mul ti cast Conversation[0..1] role createdByMilticast;
Message[0. .1] role creat edMessage;

end

associ ation Recei veMul ti cast between
Mul ti cast Conversation[0..1] role receivedByMil ticast;
Message[0..1] role recei vedVessage;

end

2.2.1 Only the specified group receives the multicast message for that group

-- Send nulticast pre-post condition
context Milticast Conversation::sendMessage(m Message)
-- Multicast conversation associates with the Message paraneter
pre cond_1: self.createdMessage = m
-- Message nust be well defined before sending
pre cond_2: misDefined
-- Need to subscribe to the nulticast group first
pre cond _3: self.join = true
-- Al conversations that have the sanme nmulticast address and port
recei ves the
-- nessage, including itself.
post cond_4: Ml ticast Conversation. alllnstances->
forAl'l (c: MulticastConversation
((c.multicast Address =
sel f.mul ti cast Addr ess
and
c.nmulticastPort =
sel f.mul ti cast Port)

i mplies
c.recei vedMessage = m
and

(c.recei vedMessage = m

35

i mplies

(c.nmulticast Address =
sel f.mul ti cast Address
and

c.multicastPort =

self.nmulticastPort)))

This part of specification defines pre and post condition of the operation
sendMessage of the class MulticastConversation. There are three pre-conditions and one
post-condition. The pre-condition “cond 1" States that the Message object m must be
associated with the sender. The pre-condition “cond_2” states that the attributes of
Message object m must be defined. The pre-condition “cond 3" dtatesthat thejoin
atribute of the agent must be true (agent must join in the group first). Findly, the post-
condition “cond_4" states that all MulticastConversation objects that subscribesto the
same multicast address and listening to the same port as the sender receive the Message
object m. Therefore, al subscribers receive multicast message.

2.2.2 Multicast sent message isthe same asreceived message

-- Receive nulticast pre-post condition
context MilticastConversation::recei veMessage(): Message
pre cond_1: self.join = true
-- New received nessage is created
post cond_2: self.recei vedMessage. ocl | sNew = true
-- New created recei ved nessage is the sane as sent
post cond_3: Ml ticast Conversation.alllnstances->
exi sts(c: MilticastConversation
((c.multicast Address =
sel f. mul ti cast Addr ess
and
c.nmulticastPort =
sel f.mul ti cast Port)
i mplies
c.createdMessage =
sel f.recei vedMessage)
and
(c.creat edMessage =
sel f.recei vedMessage
i mplies
(c.nul ticast Address =
sel f.nul ti cast Address
and
c.nmulticastPort =
self.nmulticastPort)))
-- Result of receiveMessage()
post cond_4: result = self.recei vedMessage

This part of specification defines pre and post condition of the operation
receiveM essage of the class MulticastConversation. There are one pre-condition and
three post-conditions. The pre-condition “cond_1" states that the join attribute must be
true. The post-condition “cond_2" dtates that the recelved Message object is created
during the operation receiveM essage (Message is received from another agent). The post-
condition “cond 3" states that the received M essage object must be the same as the sent

36

Message object. That isthere exists a sending conversation that subscribe to same group
and ligten to the same port as the receiving conversation, then sent message isthe same as
received message. The post-condition “cond 4" specifies the return result of this
operation. In this casg, it is the recelved message is returned. Therefore, the sent message
is the same as received message.

37

CHAPTER 7—-IMPLEMENTATION PLAN

1 Introduction

This section provides an overview of implementation plan.
1.1 Purpose

The purpose of this document isto provide work breakdown structure of the
implementation phase and implementation plan for the project “Applying
Broadcasting/M ulticasting/Secured Communication to agentMom in Multi- Agent
Systems’. This document isintended to be viewed only by project advisor and committee
members.
2. Work Breakdown Structurefor mplementation Phase

Ddiverdble Task Completion Time Cost
Criteria (day)
Revised 1.) Update class diagram from Classdiagramis 22 1
Architecture architecture phase approved by October —
Desgn committee 30
members. October
2.) Update sequence diagram All sequence 22 1
from architecture phase diagrams are October —
approved by 30
committee October
members.
Revised Test 1.) Update test plan from Test Planis 22 1
Plan architecture phase approved by October —
committee 30
members. October
Revised 1.) Update Forma Forma 22 1
Formadl Requirement Specification Requirement October —
Requirement from architecture phase Specificdion is 30
Specification approved by October
committee
members.
Component 1.) Complete class diagram Interna design of December | 3
Dedgn each classis 01-
defined. December
07
2.) StateChart Diagram All conversgtion December | 4
handlersis 01 -
defined. December
07
Coding 1.) Produce multicast Executablecodes | December | 1
conversation module are produced. 08 —
December
31

38

2.) Produce broadcast Executable codes December
conversation module are produced. 08 —
December
31
3.) Produce secured multicast Executable codes December
conversation module are produced. 08 —
December
31
4.) Produce secured unicast Executable codes December
module are produced. 08 —
December
31
5.) Produce multicast handler Executable codes December
module are produced. 08 —
December
31
6.) Revise unicast Executable codes December
conversation module are produced. 08 —
December
31
7.) Revise unicast handler Executable codes | December
module are produced. 08 —
December
31
8.) Revise component module Executable codes December
are produced. 08 —
December
31
9.) Revise agent module Executable codes December
are produced. 08 —
December
31
Unit testing 1.) Produce stub modules for Stub module for January
unit testing unit testing is 01 -
produced as January
defined in test 18
plan.
2.) Perform unit testing All unittestingare | January
passed. 01-
January
18
Integration 1.) Produce stub modules for Stub module for January
tedting integration testing integration testing 01-
is produced as January
defined in test 18
plan.

39

2.) Perform unit testing and All unit testing January 2
integration testing and integration 01-
testingarepassed | January
18
System 1.) Produce smple multi- Stub module for January 2
testing agent systems Sysem tedting is 01-
produced as January
defined in test 18
plan.
2.) Perform system testing Sydem teding is January 2
passed. 01-
January
18
JavaDoc 1.) Produce JavaDoc from al JavaDoc is December | 1
source codes. approved by 08 —
project advisor. December
31
Assessment 1) Document the testing Unit, integration December | 1
Evduation results and sysemtesting | 08 —
issummarized, December
induding falure 31
rate.
Project 1)) Evduate the usefulness of Document is January 1
Evduaion the methodol ogies used and approved by 19—
Document accuracy of the estimations project advisor. January
25
2.) Evauate the fina product Document is January 1
whether it meet dl the approved by 19—
requirements stated inthe SRS | project advisor. January
25
References 1.) Compile referencesfrom References from January 0.5
al documents al documents are 26 —
compiled. January
31
Forma 1)) Collect Forma Technicd Two ingpection January 0.5
Technicad Ingpection Letter letters are 26 —
Ingpection collected. January
Letters 31
User Manual 1.) Produce user manual User manudl is January 2
approved by 19—
project advisor. January
25
Total cost 41

As described by Boehm, there are 152 working hours in amonth, or 7 hours per
day if there are 22 working days per month. Therefore, implementation phase will need

40

41*7 = 287 hours. Furthermore, usng COCOMO mode gives 715 hours to complete this
project, and so far less than 400 hours are spent on this project by counting from the
timeog. Thus it islikely that this project will complete early.
3. Implementation Plan
3.1. Documents Update

After the second presentation, suggestions provided by the committee will be used
to update the documents produced during the architecture phase. Also, the results from
formd technica ingpection will be used to update the documents. The revised document
will be approved by the mgor professor and committee members.
3.2 User Manual

The user manud will be produced based on the previous agentMom’ s User
Manud. The manua will describe how to use the agentMom framework. The manua
aso includes new agentMom’ s source code and an example on how to use the
framework.
3.4 Component Design

Theinterna design of each component will be produced. The completed class
diagram and sequence diagram will be produced and well document.
3.5 Source Code

agentMom source code will be document using JavaDoc standard. Also, JavaDoc
API document for the new agentMom will be produced.
3.6 Assessment Evaluation

Test summary will be produced including testing results, error rate diagrams and
description.
3.7 Project Evaluation

The developer will review the project. The process will be reviewed, including the
usefulness of the methodologies used, the accuracy of the estimations, and the usefulness
of the reviews. Furthermore, the product will be reviewed and evauated for whether it
accomplishes the ideas presented in the initid overview and for the qudity of the
product. Summarized of the evauation will be document.
3.8 References

Annotated bibliography with cited references for al notations used in the project
portfolio will be document.
3.9 Alphaversion

All classes defined in the completed dass diagram will be implemented, and unit
testing will be performed before the release of dphaverson.
3.10 Beta version

Integration testing must be passed as defined in the test plan before the release of
beta verson.
3.11 Final product

System testing must be passed as defined in the test plan before the release of
find product.
3.12 Final Product Demonstration

A dmple multi-agent system will be produced to demonstrate the software
requirements and features.

41

CHAPTER 8 -FORMAL INSPECTION CHECKLIST

1. Introduction

The purpose of this document isto provide aforma checklist for the architecture
design documents of the project “Applying Broadcast/M ulticast/ Secured Communicetion
to agentMom in Multi-Agent Systems. Forma technical inspection process will ensure
the qudity of the software design. Two independent M SE students will perform the
ingpection and provide the formal report on the result of their ingpection
2. Item to be inspected

Architecture design documents of the project “Applying
Broadcasting/Multicasting/ Secured Communication to agentMom in Multi-Agent
Systems’ including use cases diagram, class diagram and sequence diagram will be
inspected.

The following documents will be supplied to each ingpector for ingpection and
references:

1.) Software Requirements Specification verson 1.0 *

2.) Project Overview verson 1.0 *

3.) agentMom User’s Manual *

4.) ClassDiagram

5.) Seguence Diagram

6.) Use Case Diagram
Note: The gar (*) indicates that the document is available only for references, not for
ingpection.
3. Organization
Supervisory Committee conssted of :

Dr. Scott A. Del.oach

Dr. David Gustafson

Dr. William Hankley
Major Professor:

Dr. Scott A. Del oach
Developer:

Chairoj Mekprasertvit
Formal Technica Inspector conssted of

Madhukar Kumar

Achargporn Pattaravanichanon

4. Formal Technical Inspection Checklist

ltem PasyFail/Partial Comment

1. All the symbol used in the use case
diagram conforms to the UML standard.

2. All the symbol used in class diagram
conformsto UML standard.

3. All the symbol used in Sequence
diagram conforms to UML standard

4. If there is amessage passing between

42

objects in sequence diagram, association
relaionship in class diagram is defined.

5. Each message in sequence diagram isa
method in class diagram.

6. Use case scenarios and description are
clear.

Example: use case scenarios are clearly
explained.

7. Class diagram and description are
Clear.

Example: role and responsibility of each
class are clearly explained.

8. Sequence diagram and description are
clear.

9. Names used in class diagram indicated
their meaning.

Example: class MulticastConversation
indicates that it is used for sending and
receiving multicast message.

10. The defined public attributes should
be accessible to the outside class.

11. The defined private attributes should
be accessble only within the class

12. The defined protected attributes
should be accessible by subclass or other
classes in the agentM om package.

43

Formal Technical Inspection

Completed for Dr Del.oach and Chairoj M ekprasertvit

| have completed the Formal Technica Inspection for Chairoj Mekprasertvit' s MSE
project and found no obvious or serious errors in the documentation provided to me.

According to my opinion, the checklist and the documentation appear to be in the desired
order.

Acharaporn Pattaravanichanon

Formal Technical Inspection Checklist

Item

Pass/Fail/Partial

Comment

1. All the symbol such used in the use
case diagram conforms to the UML
standard.

Pass

2. All the symbal used in class diagram
conformsto UML standard.

Pass

3. All the symbol used in Sequence
diagram conforms to UML standard

Pass

4. If thereis amessage passing between
objects in sequence diagram, association
relationship in class diagram is defined.

Pass

5. Each message in sequence diagram isa
method in dass diagram.

Pass

6. Use case scenarios and description are
clear.

Example: use case scenarios are clearly
explained.

Pass

7. Class diagram and description are
clear.

Example: role and respongbility of each
class are clearly explained.

Pass

8. Sequence diagram and description are
clear.

Pass

9. Names used in class diagram indicated
their meaning.

Example: class MulticastConversation
indicates that it is used for sending and
receiving multicast message.

Pass

10. The defined public attributes should
be accessible to the outsde class.

Pass

11. The defined private attributes should
be accessble only within the class

Pass

12. The defined protected attributes
should be accessible by subclass or other
classesin the agentMom package.

Pass

45

Formal Technical Inspection

Completed for Dr Del.oach and Chairoj M ekprasertvit

| have completed the Forma Technica Inspectionfor Chairoj Mekprasertvit's MSE
project and found no obvious or serious errors in the documentation provided to me.

According to my opinion, the checklist and the documentation appear to be in the desired
order.

Madhukar Kumar

46

Formal Technical Inspection Checklist

Item

Pass/Fail/Partial

Comment

1. All the symbal such used in the use
case diagram conforms to the UML
standard.

Pass

2. All the symbal used in class diagram
conformsto UML standard.

Pass

3. All the symbol used in Sequence
diagram conforms to UML standard

Pass

4. If thereis amessage passing between
objectsin sequence diagram, association
relationship in class diagram is defined.

Pass

5. Each message in sequence diagram isa
method in dass diagram.

Pass

6. Use case scenarios and description are
clear.

Example: use case scenarios are clearly
explained.

Pass

7. Class diagram and description are
clear.

Example: role and respongbility of each
class are clearly explained.

Pass

8. Sequence diagram and description are
clear.

Pass

9. Names used in class diagram indicated
their meaning.

Example: class MulticastConversation
indicates that it is used for sending and
receiving multicast message.

Pass

10. The defined public attributes should
be accessible to the outsde class.

Pass

11. The defined private attributes should
be accessble only within the class

Pass

12. The defined protected attributes
should be accessible by subclass or other
classesin the agentMom package.

Pass

47

CHAPTER 9—-TEST PLAN
1. Test Plan Identifier
TestPlan-agentMom-001
2. Introduction
Thistest plan is used to address the requires tests to show that the agentMom
framework after the integration of broadcast, multicast and security features satisfies
the requirements stated in the Software Requirements Specification verson 1.0
2.1 Objectives
a) Todetall the activities required to prepare for and conduct the test
b.) To define the test cases needed to be performed
c.) Todefinethetypes of teststhat will be used for each test cases
d.) To define the environment needed to perform the test
3. Test Items
The executable java classes to be tested are identified below:
a) Conversation class
b.) MulticastConversation class
c.) BroadcastConversation class
d.) SecureUnicastConversation class
e.) SecureMulticastConversation class
f.) MulticestHandler class
g.) BroadcastHandler class
h.) SecureMulticastHandler class
i.) MessageHandler class
J.) SecureUnicastHandler class
4. Featuresto betested
The following list describes the fegtures that will be tested:

Specification Number Description

T-001 Sending unicast message

T-002 Sending multicast message

T-003 Sending Broadcast Message

T-004 Sending secured unicast message
T-005 Sending secured multicast message
T-006 Subscribe to multiple multicast group
T-007 Recelving unicast message

T-008 Recelving multicast message

T-009 Receiving broadcast message
T-010 Recelving secured unicast message
T-011 Recaiving secured multicast message
T-012 Encrypting message

T-013 Decrypting message

5. Featuresnot to betested
Thetest cases will not cover dl possble sze and vaue of sent message. Only
possible size and vaue that are known to be required by project committee will be

48

tested. Also, The test cases will not cover al possible combined features. Only classes
that are related will be performed integration testing.
6. Approach

Unit testing — each executable java class identified in section 3 will be tested. One
or more stub modules will be created to test functiondity of each class. Junit 3.8 will be
the tool to perform testing. Unit testing will be performed before dpha release.

Integration testing — Severa related classes will be tested together to ensure
aufficient execution and compliance with the requirements after integration. One or more
stub modules will be created to test functionality of combined classes. Integration testing
will be performed before beta release. In this test, two architectures, component-based
and agent-based, are to be considered.

System tegting — The whole system will be used for system testing to ensure dl
requirements is satisfied, and reliability will be incdluded in the testing to measure
successful rate of message ddivery. Simple multi-agent systems will be created to
perform system testing. System testing will be performed before find release.

7. Environmental needs
7.1 Hardware

The testing will be done on the CIS computer [ab a Kansas State University.
Furthermore, the testing will be done on the Sun Sparc machine and Intel-based machine
available in the computer Iab.

7.2 Software

j2sdk version 1.4.2 is used to compile and execute the program.
7.3 Operating Systems

1.) Windows XP professiona

2)) Linux Debian

3.) Unix Solaris
8. Test Cases
Unit testing:

8.1 Sending and receiving unicast message

Input: Message Object

Tedt Item: Conversation class

Method: Create sender agent and receiver agent. Sender agent sends Message
object to receiver agent through unicast conversation.

vdid:

Received Message object is the same as sending M essage object.

Invalid:

Received Message object is not the same as sending Message object.

8.2 Sending and recelving multicast message

Input: Message Object

Test Item: MulticastConversation class

Method: Create sender agent and two receiver agents. All of agents subscribe to
the same multicast address. Sender agent sends Message object to the receiver agents
through multicast conversation.

vdid:

All receiver agents receive Message object

49

All received M essage objects are the same as sending Message object.

Invalid:

One or more agents do not receive Message object

One or more received M essage objects are not the same as sending Message
object.

8.3 Sending and receiving Broadcast M essage

Input: Message Object

Test Item: BroadcastConversation class

Method: Create sender agent and two receiver agents. All of agents are under the
same loca network. Sender agent sends Message object to the receiver agents through
broadcast conversation.

vdid:

All receiver agents receive Message object

All received Message objects are the same as sending M essage object.

Invalid:

One or more agents do not receive Message object

One or more received Message objects are not the same as sending Message
object.

8.4 Sending and receiving secured unicast message

Input: Message Object

Tedt Item: SecureUnicastConversation class

Method: Create sender agent and receiver agent. Sender agent sends Message
object to receiver agent through secured unicast conversation.

vdid:

Received Message object is the same as sending Message object after decrypting.

Message object is encrypted before sending.

Invalid:

Received Message object is not the same as sending Message object after
decrypting.

Message object is not encrypted

8.5 Sending and recelving secured multicast message

Input: Message Object

Test Item: SecureMulticastConversation class

Method: Create sender agent and two receiver agents. All of agents subscribe to
the same multicast address. Encryption and decryption key are pre-defined. Each agent
has the same encryption and decryption key. Sender agent sends Message object to the
recelver agents through secured multicast conversation.

vdid:

All receiver agents receive Message object

All received M essage objects are the same as sending Message object.

Invalid:

One or more agents do not receive Message object

50

One or more received Message objects are not the same as sending Message
object.

8.6 Encrypting and decrypting message
Input: Message Object
Tedt Item: SecurityManager class
Method: Create agent to read Message object. Input the Message object to
SecurityManager class.
vdid:
Message object is unreadable after it is encrypted.
Message object is readable after it is decrypted.
Invalid:
Message object is readable after it is encrypted.
Message object is unreadable after it is decrypted.

| ntegration testing:
8.7 Subscribe to multiple multicast group plus agent-based ar chitecture

Input: Message Object

Tedt Item: MulticastHandler and MulticastConversation class

Method: Create sender agent and two receiver agents. All of agents subscribe to
three different multicast addresses. Sender agent sends M essage object to the three
multicast addresses through multicast conversation.

vdid:

All receiver agents receive al Message object.

All received Message objects are the same as Sending Message objects.

Invalid:

One or more agents do not receive one or more of Message objects.

One or more recelved Message objects are not the same as sending Message
objects.

8.8 Subscribe to multiple multicast group with multicast security plus agent-based
architecture

Input: Message Object

Tedt Item: SecureMulticastConversation, MulticastConversation and
MulticastHandler class

Method: Create sender agent and two receiver agents. Encryption and decryption
key are pre-defined. Each agent has the same encryption and decryption key. All of
agents subscribe to two multicast addresses, one for multicast conversation and another
one for secured multicast conversation. Sender agent sends Message object to the
recelver agents through multicast conversation and secured multicast conversation.

vdid:

Message object is encrypted before sending.

Message object is decrypted after receiving.

All receiver agents receive al Message objects

All received Message objects are the same as Sending M essage object.

Invalid:

51

Message object is not encrypted before sending.

Message object is not decrypted after receiving.

One or more agents do not receive Message object.

One or more received Message objects are not the same as sending Message
object.
8.9 Subscribe to multiple multicast group plus component component-based
architecture

Input: Message Object

Test Item: MulticastHandler and MuticastConversation class

Method: Create sender agent and two receiver agents. Each agent has two
components. All of agents subscribe to three different multicast addresses. Sender agent
sends M essage object to the three multicast addresses through multicast conversation.

vdid:

All receiver agents receive al Message object.

All received Message objects are the same as Sending Message objects.

Invalid:

One or more agents do not receive one or more of Message objects.
One or more received M essage objects are not the same as sending M essage objects.
8.10 Subscribe to multiple multicast group with multicast security plus component-
based ar chitecture

Input: Message Object

Test Item: SecureMulticastConversation, MulticastConversation and
MulticastHandler class

Method: Create sender agent and two receiver agents. Each agent has two
components. Encryption and decryption key are pre-defined. Each agent has the same
encryption and decryption key. All of agents subscribe to two multicast addresses, one
for multicast conversation and another one for secured multicast conversation. Sender
agent sends Message object to the receiver agents through multicast conversation and
secured multicast conversation.

vdid:

Message object is encrypted before sending.

Message object is decrypted after recaiving.

All receiver agents receive al Message objects

All received Message objects are the same as Sending Message object.

Invalid:

Message object is not encrypted before sending.

Message object is not decrypted after receiving.

One or more agents do not receive M essage object.
One or more received Message objects are not the same as sending Message object.

System testing:
8.11 Test all features using agent-based ar chitecture

Input: Message Object

Ted Item: dl itemsidentified in section 3

Method: Create sender agent and two receiver agents. One agent performs
encryption and decryption key distribution. Each agent requests the key from the

52

specified agent. All of agents subscribe to two multicast address, one for multicast
conversation and another one for secure multicast communication. Each agent requests
the key from specified agent. Sender agent sends Message object to the receiver agents
through unicast conversation, secured unicast conversation, multicast conversation,
secured multicast conversation and broadcast conversation.

vdid:

All receiver agents receive al Message objects.

All received Message object is the same as sending Message object.

Invaid:

Some receiver agents do not receive al Message objects.

Some received Message object is not the same as sending Message object.
8.12 Test all features usng component-based ar chitecture

Input: Message Object

Ted Item: dl itemsidentified in section 3

Method: Create sender agent and two recelver agents. Each agent has
components. One agent performs encryption and decryption key distribution. Each agent
requests the key from the specified agent. All of agents subscribe to two multicast
address, one for multicast conversation and another one for secure multicast
communication. Each agent requests the key from specified agent. Sender agent sends
Message object to the receiver agents through unicast conversation, secured unicast
conversation, multicast conversation, secured multicast conversation and broadcast
conversaion.

vdid:

All receiver agents receive al Message objects.

All received Message object is the same as sending Message object.

Invaid:

Some receiver agents do not receive al Message objects.
Some recelved Message object is not the same as sending Message obj ect.

Compatibility Testing:

8.13 Test backward compatibility of new agentM om and agentMom 1.2

Tedt Item: new agentMom

Method: Multi-agent systems that can be run on agentMom 1.2 should be able to
run on new agentMom. The source of multi-agent systems will be supplied by Dr.
Del_oach, and will test on new agentMom.

Vvdid:

Supplied systems must be able to run as same as under agentMom 1.2 without
modifying the source code.

Invaid:

Supplied systems fails to run under the new agentMom.
9. Schedule

The testing will be performed during January 1, 2003 — January 18, 2003.

53

