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Chapter 1 - Introduction 
Systems are becoming more complex, in part due to increased customer requirements and the expectation 
that applications should be seamlessly integrated with other existing, often distributed applications and 
systems.  In addition, there is an increasing demand for these complex systems to exhibit some type of 
intelligence as well.  No longer is it “good enough” to be able to access systems across the internet, but 
customers require that their systems know how to access data and systems, even in the face of unexpected 
events or failures.   

The goal of our research is to provide a framework for constructing complex, distributed systems that can 
autonomously adapt to their environment.  Multiagent systems have become popular over the last few 
years for providing the basic notions that are applicable to this problem.  A multiagent system uses teams 
of self-directed agents working together to achieve a common goal. Such multiagent teams are widely 
proposed as replacements for sophisticated, complex, and expensive stand-alone systems for similar 
applications. Multiagent teams tend to be more robust and, in many cases, more efficient (due to their 
ability to perform parallel actions) than single monolithic applications. In addition, the individual agents 
tend to be simpler to build, as they are built from a single agent’s perspective. 

However, unpredictable application environments make multiagent teams susceptible to individual 
failures that can significantly reduce the ability of the team to accomplish its goal. The problem is that 
multiagent teams are typically designed to work within a limited set of configurations. Even when the 
team possesses the resources and computational ability to accomplish its goal, it may be constrained by its 
own structure and knowledge of team member’s capabilities, which may change over time. In most 
multiagent design methodologies [13, 32, 46], the system designer analyzes the possible organizational 
structure – which determines which roles are required to accomplish which goals and sub-goals – and 
then designs one organization that will suffice for most anticipated scenarios. Unfortunately, in dynamic 
applications where the environment as well as the agents may undergo changes, a designer can rarely 
account for, or even consider, all possible situations. Attempts to overcome these problems include large-
scale redundancy using homogenous capabilities and centralized/distributed planning. However, 
homogenous approaches negate many of the benefits of using a multiagent approach are not applicable in 
complex applications where specific capabilities are often needed by only one or two agents. Centralized 
and distributed planning approaches tend to be brittle and computationally expensive due to their required 
level of detail (individual actions in most cases). 

To overcome these problems, we have developed a framework that allows the team to design its own 
organization at runtime. In essence, we propose to provide the team with organizational knowledge and 
let the team design its own organization based on the current goals and team capabilities. While the 
designer can provide guidance, supplying the team with key organizational information will allow the 
team to redesign, or reorganize, itself to match its scenario. This paper defines a theoretical framework 
that shows how the appropriate knowledge of a team’s organizational structure and capabilities can allow 
multiagent teams to reorganize at runtime thus enabling them to achieve their top-level team goals more 
efficiently and effectively in the face of a changing environment and team capabilities. 

1.1 Motivating Examples 

1.1.1 Cooperative Robotic Search and Rescue 

Consider the case where a team of heterogeneous robots is performing a cooperative search and rescue 
operation.  Some robots will have better capabilities for searching due to their enhanced sensor package 
while some robots may be better suited for rescuing due to their specific effectors such as grippers and 
robotic arms, each with differing payload amounts.  However, robots with enhanced rescue abilities can 
also perform searching, since they must have some type of minimal object detection system in order to 
perform rescues.  Thus at the onset of the search and rescue operation, since the team has not yet found 
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any victims, all the robots are available for searching.  Once a victim is found, one of the robots must 
switch to a rescuer role and attempt to rescue the victim.  However, choosing the correct robot to perform 
the rescue is dependent on many properties of both the victim and their current situation, which may 
include size of the victim, access to victim, etc.   

In addition, the capabilities of the individual robots may change over time.  This must be accounted for 
when organizing the team.  For instance, what happens if there are three robots performing the rescue role 
and one of those robots happens to break down?  Should the team get another robot to take its place?  Or, 
should the team continue with its two rescue robots?  These are decisions that can only be made within 
the context of what is best for the team and its current state in terms of the problem being solved.  What is 
needed is a mechanism that the robot team can use to determine the best robot for the job in terms of 
overall team performance.  This mechanism must take into account the current state of the team, which 
includes the goals being pursued, the available team members, and the team member’s capabilities. 

1.1.2 Battlefield Information Systems 

The goal of a battlefield information system is to provide the commander with both tactical and strategic 
intelligence. To accomplish this, various types of sensors are used to detect events and objects of interest. 
The sensor data is then be combined, or fused, with other sensor data to provide a commander with a 
more complete picture of the battlefield. Due to the nature of war, there is a high probability that some of 
these sensors will become disabled. However, when sensors are lost, their information is still required in 
order to provide the battlefield commander with a complete picture. Thus, the battlefield information 
system must detect sensor failures and adapt its processing in a timely manner.  An example of such a 
system is one in which air, satellite and ground-based sensors must be monitored to evaluate enemy force 
deployment and strategy. To operate effectively in this scenario, the battlefield information system must 
adapt to changes in both the queries from the commander as well as sensor availability. 

As an example, assume we have a system with three types of agents as shown in Figure 1: data sensor 
agents, synthesis agents, and query agents.  Data Sensor Agents (DS) provide the interface between the 
hardware sensors and the Synthesis Agents (SA), which fuse data from various sensor types to formulate 
answers to requests for information of the Query Agents (QA).  The Query Agent translates, manages and 
communicates the query to the Synthesis Agents and returns results to the commander.  

 

Query: Show all tanks, troop positions and 
helicopters within sector

QA

SA1 SA2

DS DS

Ground 
Sensor

Air 
Sensor

DS

Satellite 
Sensor

Air 
Sensor

 
Figure 1.  Original System Organization 
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When the system receives a query, there is no assurance the sensors required to execute the query will be 
available. If a sensor is damaged, the system may be required to re-evaluate its ability to satisfy the query 
requirements. If the requirements are not met, the system must reorganize to produce a new structure that 
can meet the query goal requirements.  Figure 1 shows the initial layout of the system as set up to answer 
the query, “Show all tank, troop and helicopter movement within sector”. Answering this query requires 
the minimal capabilities of three sensors and 3 DS agents to interpret the raw data. SA1 possesses the 
capability to accept data from ground and air sensors and synthesize it for return to the QA. SA2 accepts 
and passes data from the satellite via the DS agent.   

A problem arises when the Air Sensor that the system is using to answer the query becomes unavailable.  
The system reacts to this event by reorganizing itself as shown in Figure 2.  Notice that instead of simply 
replacing the lost Air Sensor with another one and integrating its data via SA1 as might be expected, the 
system chose to integrate the Air Sensor via SA2.  The answer to why the system chose this particular 
organization lies in the capabilities of the various sensors and the agents that are combining the data.  
Even though the new Air Sensor provides data similar to the one that was lost, the system realized that 
due to its lower quality, combining it with the Satellite data first and then combining it with the Ground 
Sensor data would yield a better result (either in terms of timeliness or quality) than simply replacing the 
failed Air Sensor with the new Air Sensor.  Analysis of this type requires detailed knowledge about the 
capabilities of the sensors as well as the agents used to combine the data.  The goal of our research is to 
provide a framework that provides systems with this knowledge and analysis capability. 

 

Query: Show all tanks, troop positions and 
helicopters within sector

QA

SA1 SA2

DS

Satellite 
Sensor

Air 
Sensor

DSDS
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Air 
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Figure 2.  System after Sensor Failure 
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Chapter 2 - Organization Model for Adaptive 
Computational Systems 

They key result of this project was the development of a model for artificial organizations, called the 
Organization Model for Adaptive Computational Systems (OMACS). This model allows MAS 
developers to define a structure to support specific applications. OMACS does not assume a specific goal 
model.  (Note: In the following definitions, Ρ(S) is used to denote the powerset of S.) 

2.1 General Organization Definition 

OMACS defines an organization as a tuple 

O = 〈G, R, A, C, Φ, P, Σ, oaf, achieves, capable, requires, possesses, potential〉 

where  

• G goals of the organization 
• R  set of roles 
• A  set of agents  
• C  set of capabilities 
• Φ  relation over G × R × A that defines the current set of agent/role/goal assignments 
• P  set of constraints on Φ  
• Σ  domain model used to specify objects in the environment, their inter-relationships, 

and the operations that can be performed upon them 
• oaf  function Ρ(G × R × A) → [0.. ∞] that defines the quality of a proposed set of 

assignments 
• achieves function G × R → [0..1] that defines how well a role achieves a goal 
• capable function A × R → [0..1] that defines how well an agent can play a role 
• requires  function R → Ρ(C) that defines the set of capabilities required to play a role 
• possesses  function A × C → [0..1] that defines the quality of an agent’s capability 
• potential  function A × R × G → [0..1] that defines how well an agent can play a role to achieve 

a goal 

Each of the above components is described below in detail. 

2.2 Goals 

Artificial organizations are designed with a specific purpose, which defines the overall function of the 
organization.  Goals are defined as a desirable situation [39] or the objective of a computational process 
[65].    Within OMACS, each organization has a set of goals, G, that it seeks to achieve.  OMACS makes 
no assumptions about these goals except that they can be assigned to individual agents. (For simplicity, 
this report refers to a role achieving a goal, although there are many types of goals such as goals of 
achievement, maintenance, etc.)  A detailed description of the Goal Model for Dynamic Systems 
(GMoDS) used in this research is given in Chapter 3. 

2.3 Roles 

Within OMACS, each organization contains a set of roles (R) that it can use to achieve its goals.  A role 
defines a position within an organization whose behavior is expected to achieve a particular goal or set of 
goals.  Roles are analogous to roles played by actors in a play or by members of a typical corporate 
structure.  A typical corporation has roles such as “president”, “vice-president”, and “mail clerk”.  Each 
role has specific responsibilities, rights and relationships defined in order to help the corporation perform 
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various functions towards achieving its overall goal.  Specific people (agents) are assigned to fill those 
roles and carry out the role’s responsibilities using the rights and relationships defined for that role.  

OMACS roles consist of a name and a role capability function, rcf.  Each role, r ∈ R, is a tuple 〈name, 
rcf〉 where 

• name  a string 
• rcf  function A → [0..1] that defines how well a given agent can play the role 

While an agent that is assigned a role may chose to play that role in any way it wishes, OMACS does 
have certain expectations for agents assigned to roles.  First, the agent is expected to play that role in 
order to achieve a specific goal. Thus, OMACS assumes that each role implies some minimal expected 
behavior.  For instance, it would be assumed that someone playing the “mail clerk” role in a company 
would pick up mail from the mailroom and eventually deliver that mail to its addressee.  This minimal 
behavior defines the functionality associated with the role.  Although an understanding of this behavior is 
critical to the design and operation of the actual system, it is not critical to the definition of the 
organization of the system and is not specified further in OMACS. 

A role’s rcf determines the ability of an agent to play that role; it is user defined and computed in terms of 
the agent’s capabilities.  Having the required capabilities is not necessarily sufficient to determine 
whether an agent can actually play the role or decide which agent can best play the role.  Some 
capabilities may be more important to the role than others.  To capture this on a role-by-role basis, the 
designer must define a role specific rcf, which computes a value in the range of 0 to 1.  The role 
capability function allows the role designer to specify how specific capabilities affect the ability of an 
agent to play that role.  OMACS uses the notation r.rcf(a) to denote the application of the role capability 
function for role r on agent a. 

2.4 Agents 

OMACS also includes a set of heterogeneous agents (A) in each organization.  As described by Russell 
and Norvig, an agent is an entity that perceives and can perform actions upon its environment [39], which 
includes humans as well as artificial (hardware or software) entities.  For our purposes, we define agents 
as computational systems that inhabit some complex dynamic environment, sense and act autonomously 
in this environment, and by doing so realize a set of goals.  Thus, we assume that agents exhibit the 
attributes of autonomy, reactivity, pro-activity, and social ability.  Autonomy is the ability of agents to 
control their actions and internal state. Reactivity is an agent’s ability to perceive its environment and 
respond to changes in it, whereas pro-activeness ensures agents do not simply react to their environment, 
but that they are able to take the initiative in achieving their goals.  Finally, social ability allows agents to 
interact with other agents, and possibly humans, either directly via communication or indirectly through 
the environment.  

Within the organization, agents must have the ability to communicate with each other, accept assignments 
to play roles that match their capabilities, and work to achieve their assigned goals. 

2.5 Capabilities 

The set of capabilities, C, in an organization is the sum of all the capabilities required by roles or 
possessed by agents in the organization. 

 ∀ c:C   (∃ a:A  (a,c) ∈ possesses  ∨  ∃ r:R  (r,c) ∈ requires) (1) 
Capabilities are the key to determining exactly which agents can be assigned to which roles within the 
organization.  Capabilities are atomic entities that are used define to the abilities of various agents in 
relation to other agents as well as roles.  Capabilities can be used to capture soft abilities such as the 
access to/control over specific resources, the ability to communicate with other agents, the ability to 
migrate to a new platform, or the ability to use computational algorithms that allow the agent to carry out 



 

 - 7 - 

specific functional computations.  Capabilities also capture the notion of hard capabilities that are often 
associated with hardware agents such as robots.  These hard capabilities are generally described as 
sensors, which allow the agent to perceive a real world environment, and effectors, which allow the agent 
to act upon a real world environment.  

2.6 Assignment Set 

The assignment set Φ is a subset of all the potential assignments of agent to play roles to achieve 
organizational goals. The selection of the actual subset members is left up to the organization. 

 Φ ⊆ {〈a,r,g〉 | a ∈ A ∧ r ∈ R ∧ g ∈ G ∧ potential(a,r,g) > 0} (2) 
However, just because an agent has the potential to play a role in order to achieve a goal, it does not 
indicate that the actual assignment of agent a to role r to achieve goal g, has been made.  It simply 
indicates that if the assignment of agent a to role r is made, it has the potential to achieve goal g.   

To capture the notion of the actual assignments that have been made in the organization, we define an 
assignment set Φ which consists of agent-role-goal tuples, <a,r,g>.  If <a,r,g> ∈ Φ, then agent a has 
been assigned by the organization to play role r in order to achieve goal g.  The only inherent constraint 
on Φ is that it must contain only assignments whose potential value is greater than zero. 

2.7 Policies 

In general, policies are a set of formally specified rules that describe how an organization may or may not 
behave in particular situations.  In OMACS, we distinguish between three specific types of policies: 
assignment policies (PΦ) behavioral policies (Pbeh), and reorganization policies (Preorg). 

2.7.1 Assignment Policies 

In general, OMACS allows the assignment of any agent a to any role r in order to achieve any goal g, as 
long as potential(a,r,g) > 0.  However, in a specific application, there may be additional constraints 
that the assignment set, Φ must satisfy.  These constraints are captured in the form of assignment policies. 
Thus, assignment policies, PΦ, constrain the assignment set Φ.   

In many cases, generic policies such as “an agent may only play one role at a time” or “agents may only 
work on a single goal at a time” are useful and are shown below. 

∀ a1,a2:A r1,r2:R g1,g2:G  〈a1,r1,g1〉 ∈ Φ ∧ 〈a2,r2,g2〉 ∈ Φ  ∧ a1 = a2 ⇒ r1 = r2 

∀ a1,a2:A r1,r2:R g1,g2:G  〈a1,r1,g1〉 ∈ Φ ∧ 〈a2,r2,g2〉 ∈ Φ  ∧ a1 = a2 ⇒ g1 = g2 

However, policies are often application specific, such as requiring particular agents to play specific roles 
or that the correct number of agents are playing specific roles.  In an information system application, it 
might be necessary to ensure that no more than two agents are assigned to play roles that interface to a 
specific database in order to reduce resource contention.  If the specific role that has access to the 
database is named DBAccess, then we could specify such a policy as (where # is the cardinality operator) 

#({a | <a,DBAccess,g> ∈ Φ }) ≤ 2 

The language used to define policies will be implementation specific and will consist of names for the 
entities and relationships from our organizational framework (e.g., potential, related, etc.) as well as 
application specific terms such as role, goal, and capability names, which are defined in the organization’s 
ontology/domain model, Σ. 
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To determine if an individual assignment, φ, or an assignment set, Φ, are legal according to the current 
organizational policies, OMACS defines two legal operations.  Here P(P) refers to the set of all policies 
of the organization. 

legal: φ, P(P) → Boolean 
legal: Φ, P(P) → Boolean 

legal: Φ, 〈Φ’,E’〉, P(P) → Boolean 
The first operation takes a single assignment and determines its legality according to a set of policies 
while the second operation determines the legality of a set of assignments according to a set of policies.  It 
will often be the case that a single assignment is legal by itself, however, when it is included into a set of 
assignments, it may become illegal due to policies such as the first two presented in this section.   

Finally, we define the legality of a sequence of legal assignments, Φ’ = [Φ1, Φ2, … Φn], in terms of the 
legality of the individual assignments. 

legal: Φ, 〈Φ’,E’〉, P(P) → Boolean  
where  

 legal(Φ’,P) = legal(Φ1,P) ∧ legal(Φ2,P) … legal(Φn,P)  (3) 

2.7.2 Behavioral Policies 

Behavioral policies Pbeh define how agent in the organization should behave in relation to one another.  
For instance, in a conference review system, we would want to describe responsibilities of agent playing 
specific roles and their relationships to other roles. Although behavioral policies have been identified as 
part of OMACS, there was not time to define a formal language and semantics. However, the following 
presents a notional overview of how behavioral policies might be used in OMACS. 

To refer to an agent playing a particular role, organizational predicates (achieves, capable, 
possesses, and potential) or assignment set membership can be used.  Thus, to test whether a 
particular agent is playing a particular set of roles (e.g., the agent making final decisions cannot be an 
author of any papers for the conference), we can test for inclusion in Φ as follows. 

∀ a:A, g1,g2:G  ¬(<a,Author,g1> ∈ Φ  ∧ <a,DecisionMaker,g2> ∈ Φ) 
Although it is possible to state some requirements using only concepts from OMACS, other cases require 
the use of relationships between roles based on system/environment data. For instance, in the conference 
management system the relationships between roles based on the papers submitted, reviewed, or collected 
are vital.  Thus, we must be able to talk about the data in the system as well, which is defined by the 
domain model, Σ. 

2.7.3 Reorganization Policies 

Application specific approaches to reorganization allow the designer to define heuristics to guide the 
system in its reorganization. For instance, instead of using a generic algorithm, the designer could specify 
the order in which agents should fill roles. OMACS models these heuristics as a special set of 
organizational polices called reorganization policies, Preorg.  Reorganization policies the designer to 
specify default reorganization strategies that are used prior to expensive computational approaches (see 
Section 2.16.2). Reorganization can first be attempted using these reorganization policies. If 
reorganization fails, these policies may be ignored and reorganization attempted using general purpose 
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(and more expensive) approaches. Application specific rules increase the reasoning efficiency in 
anticipated scenarios while providing robustness for unknown or uncommon cases [69]1. 

Assignment policies (PΦ) are only used to constrain the interactions between roles, protocols, and robots; 
they do not prescribe actions to be taken by the organization. To create reorganization policies, the 
organizational policies logic is used directly for carrying out reorganization actions. An example of a 
possible application specific reorganization rule is shown below. 

<a1,r1,g1> ∈ Φ ∧ ¬capable(a1,r1) ∧ capable(a2,r1) ⇒ <a2,r1,g1> ∈ Φ’ ∧ <a1,r1,g1>  ∉ Φ’ 
Here, Φ’ refers to the assignment set after the reorganization occurs.  In this case, the rule specifies that if 
agent a1 is playing r1 to achieve goal g1 and a1 becomes incapable of playing role r1, then if a2 is 
capable of playing role r1, it should be assigned to goal g1 and a1 should be de-assigned. 
 

2.8 Domain Model 

The domain model, Σ, is used to define object types in the environment and the relations between those 
types.  The domain model is based on traditional object oriented class diagrams. They include object 
classes that each have a set of attribute types.  Relations between object classes include general purpose 
associations as well as generalization-specialization and aggregation.  Relations may also include 
multiplicities to constrain the number of object classes participating in any given relation. 

The domain model Σ is a tuple 〈O, Rel〉 where 

• O set of object types, which consists of public attributes 
• Rel relation over O × O that defines various relationships between object types 

An object O is a tuple of 〈Attrs, C〉 where 

• Attrs set of datum 
• C set of constraints over Attributes 

A datum, d, is defined as a tuple 〈name, type, value〉 where 

• name  a string 
• type  a data type 
• value  a valid instance of the attribute data type 

There are three types of relations in Rel, 
• RelAgg  a type of Rel denoting general aggregation relations between object types 
• RelGen  a subset of Rel containing generalization-specialization relations between object 

types 
• RelAss  a subset of Rel containing general associations between object types 

The associations in a domain model can be used to define functions for talking about relations between 
environment object types. For instance, Figure 3 shows an ontology/domain model for a conference 
review system. 

wholePaperpaperAbstract paperReviewreviewedPaper
11 1 0 .. *

Abstract Paper
author : String

Review

 
Figure 3.  Conference Management Ontology/Domain Model  

                                                      
1 An excellent example of this is given in [69] where human intuition led operators to propose reorganization when the automated 
algorithm deemed it unnecessary. Later analysis showed the operator’s proposed reorganization was globally optimal. 
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The ontology/domain model defines an environment with a set of papers, each with an associated abstract 
and a set of reviews.  Using the relations defined in the model, we can talk about the reviews a paper has 
received paperReview(p) or a paper’s abstract paperAbstract(p), etc.  Multiplicities may constraint the 
number of allowable environment objects or the number of objects that may be related.    Figure 3 defines 
a model where each abstract must have exactly one paper and each paper must have exactly one abstract.  
It also specifies that a review must be related to a single paper, while a paper may have any number of 
reviews on it (including none).  Thus several organizational constraints can be defined in the domain 
model itself.   

2.9 Organizational Assignment Function 

Ideally, an organization will select the best set of assignments to maximize its ability to achieve its goals. 
As with the rcf, the selection of assignments may be application specific.  Thus, each organization has 
its own application specific organization assignment function, oaf, which computes the goodness of the 
organization based on Φ.   

oaf: Φ → 0 .. ∞ 
With the oaf, the organization designer can specify how to make assignments based on a variety of 
organization specific constraints such as the importance of the specific goals or whether the assignment of 
multiple agents to a given role and goal will improve goal satisfaction.  In the absence of an organization-
specific organizational assignment function, we often define the oaf as the sum the scores in some 
assignment set Φ. 
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2.10 Achieves 

The achieves function defines how well a role achieves a goal.  It can be predefined by the organization 
designer or learned before or during system operation. Each role is responsible for achieving specific 
system goals and may actually be able to achieve multiple goals.  However, since some roles are better for 
achieving certain goals than other roles, OMACS must have an approach to determine which roles are 
preferred for which goals.  Therefore, OMACS defines an achieves function that describes how well a 
particular role achieves a specific goal.  The achieves function is a total function from the cross product 
of roles and goals to a real value in the range of 0 to 1.   

achieves: R, G → 0 .. 1 
Thus a role that cannot achieve a particular goal has an achieves value of 0, while any role that can 
achieve a goal would have an achieves value greater than zero. The achieves function is used along 
with the capable function (defined in Section 2.13) to define the potential of a specific assignment (see 
Section 2.14). 

2.11 Requires 

In order to perform a particular role, agents must possess a sufficient set of capabilities that allow the 
agent to carry out the role and achieve its assigned goals.  For instance, to play the “president” role, a 
person would be expected to have knowledge of the corporation’s domain, experience in lower-level jobs 
in similar types of companies, and experience in managing people and resources; an artificial organization 
is no different.  Roles require a certain set of capabilities while agents possess a set of capabilities (see 
Section 2.12).   

To capture the notion of a role requiring a specific capability, we have defined the requires predicate.  
If a role, r, requires a specific capability, c, then requires(r,c) is true. 
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requires: R, C → Boolean 
All roles require some level of capability, even if it is purely computational or communicative.  
Therefore, OMACS dictates that all roles require at least one capability. 

 ∀ r:R   #{c | requires(r,c) > 0} ≥ 1 (4) 

2.12 Possesses 

To be able to play a specific role, an agent must possess the capabilities required for that particular role.  
To capture a given agent’s capabilities, we define a possesses function, which returns a value in the 
range of 0 to 1. The possesses function defines the quality of each capability that an agent has; 0 
represents no capability while a 1 represents a high quality capability.   

possesses: A, C → 0 .. 1 
As agent capabilities improve or degrade over time, the output of the possesses function is dynamic. 
Agents may learn and thus (hopefully) improve an agent’s capability.  However, an agent’s capability 
may also degrade through either hardware failure or loss of access to/competition over a particular 
resource.   

2.13 Capable 

Using the capabilities required by a particular role and capabilities possessed by a given agent, we can 
compute the ability of an agent to play a given role, which we capture in the capable function.  The 
capable function returns a value from 0 to 1 based on how well a given agent may play a specific role. 

capable: A, R → 0 .. 1 
As described above, since the capability of an agent, a, to play a specific role, r, is application and role 
specific, OMACS provides a role capability function, rcf to compute the capable function for each 
agent-role pair.  Thus, the capability score of an agent playing a particular role is defined via the designer 
defined role capability functions (rcf) for each organizational role. 

 ∀ a:A r:R  capable(a,r) = r.rcf(a)  (5) 
While the rcf is user defined, it must conform to one OMACS constraint. To be capable of playing a 
given role in the current organization, an agent must possess all the capabilities that are required of that 
role.   

 ∀ a:A, r:R  capable(a,r) > 0 ⇔ {c | requires(r,c)} ⊆ {c | possesses(a,c)}  (6) 

2.14 Potential 

One of the goals of an organization is to provide a mechanism to distribute goals in such a way that agents 
work together toward accomplishing the top-level organization goal.  As described above, these goals are 
achieved by assigning agents to specific roles in the organization.   However, because the agents in an 
organization may be heterogeneous, some agents may play a particular role better than others.  The 
potential function captures the ability of an agent to play a role in order to achieve a specific goal; it maps 
each agent-role-goal tuple to a real value ranging from 0 to 1, where 0 indicates that the agent-role-goal 
tuple cannot be used to achieve the goal.  A non-zero values indicates how well an agent can play a role in 
order to achieve a goal.   

potential: A, R, G → 0 .. 1 
The potential of an agent to play a specific role in order to achieve a specific goal is defined by combining 
the capable and achieves functions.  

 ∀ a:A r:R g:G   potential(a,r,g) = achieves(r,g) * capable(a,r) (7) 
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2.15 Organizational Agents  

Organizational agents (OA) are organizations that function as agents in a higher-level organization.  OAs 
allow OMACS to represent a hierarchy of organizations, providing OMACS with both flexibility and 
scalability. As agents, OAs may possess capabilities, coordinate with other agents, and be assigned to 
play roles.  They represent an extension to the traditional Agent-Group-Role (AGR) model developed by 
Ferber [15, 18] and is similar to the organizational meta-model proposed by Odell [35].   

OMACS defines two relationships between the higher-level organization and the OA’s internal 
organization.  First, there must be a connection between the role being played in the higher-level 
organization and the OA’s internal oaf function.  Second, a specific relationship must exist between the 
OA’s internal capabilities and those of the higher-level organization. 

Because the role the OA is playing will affect the internal organization of the OA, there must be a way to 
relate the organizational assignment function of the OA to its role.  However, the oaf is defined as having 
no parameters and only has access to the local organizational components (see Section 2.9).  Therefore, 
an OA must extend the definition of an organization by adding a new oaf function that allows it to take a 
parameter that includes a set of roles from the higher-level organization.  Thus, an OA is an organization 
with one extension, a polymorphic oaf function that takes as input an assignment set along with a set of 
roles it has been assigned to play in the higher-level organization. Again, the polymorphic oaf function is 
application specific and must be written to take into account the specific roles the OA can take on in the 
higher-level organization. 

oaf : Φ, R → 0 .. ∞ 
The relationship between the capabilities in an OA and those of the higher-level organization is actually 
straightforward.  Essentially, if a capability belongs to an agent that is part of the OA’s internal 
organization, then those capabilities also exist in the higher-level organization by inclusion.  Thus, if an 
OA, a, exists as an agent in an organization, o, then the capabilities possessed by a in o must be equivalent 
to the entire set of capabilities possessed by the individual agents in a’s internal organization.  (Dot 
notation is used to differentiate between the capabilities of the organizations represented by a and o 
respectively.) 

 a.C ⊆ o.C (8) 
 ∀ ag:a.A, c:a.C    a.possesses(ag, c) > 0 ⇒ o.possesses(a, c) > 0 (9) 

Notice that we stop short of defining the actual possesses score for these capabilities in the higher-level 
organization.  This is because there may be multiple agents in the OA’s internal organization with the 
same capability.  Thus, the actual possesses score will be application specific. 

2.16 Organization and Reorganization 

Each organization has an implicitly defined organization transition function that describes how the 
organization may transition from one organizational state to another over the lifetime of the organization. 
Since the team members (agents) as well as their individual capabilities may change over time, this 
function cannot be predefined, but must be computed based on the current state, the active goal set, 
GActive, and the current policies. In our present research with purely autonomous teams, we have only 
considered reorganization that involves the state of the organization.  However, we have defined two 
distinct types or reorganization: state reorganization, which only allows the modification of the 
organization state, and structure reorganization, which allows modification of the organization structure 
(and may require state reorganization to keep the organization consistent). We define the state of the 
organization as the set of agents, A, the possesses, capable, and potential functions, and the 
assignment set, Φ.  However, not all these components may actually be under the control of the 
organization.  For our purposes, we assume that agents may enter or leave organizations or relationships, 
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but that these actions are triggers that cause reorganizations and are not the result of reorganizations.  
Likewise, possesses (and thus capable and potential as well) is an automatic calculation that 
determines the possible assignments of agents to roles and goals in the organization.  The calculation of 
possesses is totally under control of the agent (i.e. the agent may lie) and the organization can only use 
this information in deciding how to make assignments.  This leaves one element that can be modified via 
state reorganization: Φ.   

2.16.1 Reorganization Triggers 

Various events may occur in the lifecycle of a multiagent team that may require it to reorganize.  In 
general, reorganization is initiated when an event occurs that changes the current goals of the 
organization or forces a change in Φ.  We discuss these two situations in detail below. 

2.16.1.1 Goal Set Changes 

Any change in G may cause reorganization.  There are three basic types of events that can cause a change 
in G:  (1) insertion of a new goal, (2) goal achievement, and (3) goal failure.  Each of these is discussed 
below. 

The first situation deals with new goals being added to G. However, we cannot say with certainty that 
reorganization will occur based on a new goal in G. It is possible that the organization will choose to 
forego reorganization for a number of reasons, the most likely being that it has simply chosen not to 
pursue any new goals added to G at the present time. 

The second case deals with goal achievement.  When a goal g is achieved, G is changed to reflect that 
event by (1) removing g from G and (2) possibly adding new goals, which are enabled by  the 
achievement of g, into G.  Obviously, the agent assigned to achieve goal g is now free to pursue other 
goals.   

The third instance involves goal failure, which really has two forms: agent-goal failure and goal failure.  
When a specific agent cannot achieve goal g but g might still be achievable by some other agent, agent-
goal failure occurs.  When agent-goal failure occurs, reorganization must occur to allow the organization 
to (1) choose another agent to achieve g, (2) not pursue g at the current time, or (3) choose another goal to 
pursue instead of g.  In any of these situations, g is not removed from G since it has not been achieved. In 
the case where the organization or the environment has changed such that a goal g can never be achieved, 
then goal failure occurs.  In this case, g is removed from G and the organization must attempt to assess 
whether it can still achieve the overall system goals. Reorganization may occur to see if the agent 
assigned to achieve g can be used elsewhere.  In all cases, the selection of the appropriate strategy is left 
to the organization. 

When a maintenance goal g fails, it signifies the violation of a constraint that must be maintained. 
Typically, g requires a special agent/role to monitor for conditions that violate the constraint.  When this 
constraint is violated, the maintenance goal fails.  In this case, the organization must re-establish the 
violated constraint.  

Ideally, there would be a way to annotate which goals should be pursued when maintenance goal is failed 
in order to re-establish the required condition; however, this requires additional research and extension 
of the goal model as presented in Chapter 3.  

2.16.1.2 Assignment Set Changes 

The second type of change that triggers reorganizations are changes within a team that force a change in 
Φ. Currently, we have limited our investigation of these changes to the set of agents, A, and their 
individual capabilities.  When an agent that is part of Φ is removed from the organization, a 
reorganization must occur, even if only to remove the agent and its assignment(s) in Φ.  Likewise, when 
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an agent that is part of Φ loses a capability that negates its ability to play a role that it is assigned, 
reorganization must occur as well. 

In general, when changes occur in an agent’s capability, a reorganization may or may not occur, based on 
the agent’s capable relation. We have identified four specific types of changes in an agent’s capabilities 
that may indicate a need for reorganization: (1) when an agent gains the ability to play a new role, (2) 
when an agent loses the ability to play a role, (3) when an agent increases its ability to play a specific role, 
or (4) when an agent decreases its ability to play a specific role.  While case 2 requires reorganization if 
the agent is currently assigned to play the role for which it no longer has the capability to play, whether or 
not to reorganize is left up to the organization when the other three cases (along with 2 when the agent is 
not currently assigned that role) occur. 

2.16.2 Reorganization 

Reorganization is the process of changing the assignments of agents to roles to goals as specified in Φ.  
The organization’s oaf function is used to determine the best new Φ; however, total team reorganization 
may not be necessary or efficient. (In the absence of any information or policies, a total reorganization 
would take on the order of 2A×G×R.) 

One approach is to take a local view, in which the organization looks at the OMACS state and reorganizes 
in a locally optimal fashion (i.e. hill climbing). However, when dealing with dynamic environments, it is 
often desirable to reorganize so that the team will operate efficiently and effectively in its present 
situation as well as being adaptable to its changing environment. Thus, we would like to take a long-range 
or global view. Unfortunately, it has been shown that in the general case globally optimal reorganizations 
are NEXP-complete and, thus impractical for most applications with any time constraints. Therefore, 
OMACS provides a mechanism for augmenting the locally optimal algorithm with application specific 
rules to make reasoning more efficient and to enable globally better solutions. 

2.16.2.1 Local Reorganization Techniques 

For our general-purpose reorganization, we developed several reorganization algorithms, which provide a 
default reorganization capability.  When a reorganization trigger occurs, the general-purpose 
reorganization algorithms are used to find appropriate organizations to achieve the organizations goals, if 
possible.  

To compute the best reorganization, a centralized algorithm that optimizes the organization’s oaf might 
seem appropriate; however, this approach is short sighted. First, it does not deal with the cost associated 
with reorganizing and, second, it does not consider the reason reorganizing was initially undertaken. 
Exploiting reorganizing costs requires a distributed solution since the cost for robots to change roles is not 
globally known. For instance, if an agent is required to perform a complex computation, any effort toward 
that computation would be lost if the agent was reassigned to another role/goal. Considering the reason 
for reorganization may enable a less extensive (and less costly) reorganization. If the reason for 
reorganizing is to fill a single role, then a total reorganization may be a waste of time and resources.  

2.16.2.2 Application Specific Approaches 

See the discussion of reorganization policies in Section 2.7.3 for a discussion of application specific 
approaches to reorganization.  
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Chapter 3 - Goal Model for Dynamic Systems 
OMACS assumes that the organizational goals are simply a set of goals that need to be achieved; 
however, to capture the dynamic nature of an OMACS system, a goal model that allows designers to 
define adaptive behavior based on dynamic problem was required.  A second major result of this research 
was the definition of the Goal Model for Dynamics Systems (GMoDS), which defines the operational 
semantics of a dynamically changing model of system goals.  

In GMoDS, there are two main representations of system goals: the goal specification model, GSpec, and a 
goal instance model, GInstance.  The goal specification model is a static representation of system goals 
specified by the system designer and includes the definitions of when goals may be created and pursued.  
The goal instance model is a dynamic model used at runtime to define the actual goals generated during 
system operation. 

GMoDS is a tuple 〈GSpec, GInstance, instanceOf〉 where 

• GSpec a goal specification model  
• GInstance  a goal instance model 
• instanceOf  function that maps goal instances from GInstance to goal classes in GSpec 

The goal specification tree, GSpec, is defined as the tuple:  〈GS, E, Params, children, precedes, triggers, 
¬triggers 〉 

• GS set(Goal)  
• E set(Event) 
• Params set(Parameters) 
• children  ⊆  GS × GS  
• precedes  ⊆  GS × GS  
• triggers  ⊆  GS × E × P(Params) × GS  
• ¬triggers  ⊆  GS × E × P(Params) × GS 

A single goal, g, is defined as a tuple 〈state, attr〉 where 

• state  expression defining a desired state of the world parameterized by attr 
• attr  set(Parameter) 

There are also a set of predicates defined over a goal: 

• conjunctive : GS → Boolean  
• disjunctive : GS → Boolean  
• achievement : GS → Boolean 
• maintenance : GS → Boolean 
• achieved  : GS → Boolean 
• failed : GS → Boolean 
• preceded  : GS → Boolean 
• obviated  : GS → Boolean 

An event, e, simply has a 〈name〉 attribute where 

• name a string 
A parameter, p, is defined as a tuple 〈name, type, value〉 where 

• name  a string 
• type  a data type 
• value  a valid instance of the attribute data type 
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To make the discussions easier, the following functions are defined over the relations defined in GMoDS: 

Function Signature Function Definition 
parent : GS → P(GS) parent(g) = {g1:GS | (g1,g)∈children} 

children : GS → P(GS) children(g) = {g1:GS | (g,g1)∈children} 

precedes : GS → P(GS) precedes(g) = {g1:GS | (g,g1)∈precedes} 

triggers : GS × Event → P(GS) triggers(g,e) = {g1:GS | ∀ p:Params (g,e,p,g1)∈triggers} 

triggers : GS × Event × P(Params) → P(GS) triggers(g,e,p) = {g1:GS | (g,e,p,g1)∈triggers} 

¬triggers : GS × Event → P(GS) ¬triggers(g,e) = {g1:GS | ∀ p:Params (g,e,p,g1)∈¬triggers} 

¬triggers : GS × Event × P(Params) → P(GS) ¬triggers(g,e,p) = {g1:GS | (g,e,p,g1)∈¬triggers} 

triggeredBy : GS × Event × P(Params) → P(GS) triggeredBy(g,e,p) = {g1:GS | (g1,e,p,g)∈triggers} 

¬triggeredBy : GS × Event × P(Params) → P(GS) ¬triggeredBy(g,e,p) = {g1:GS | (g1,e,p,g)∈¬triggers} 

3.1 Goals 

Every artificial organization is designed with a specific purpose, which defines the overall function of the 
organization.  Goals can be thought of as a desirable situation [39] or the objective of a computational 
process [65].  In GMoDS, there are two types of goals: goal classes and goal instances (which are 
analogous to object classes and object instances). Goal classes define templates from which goal instances 
are created. A goal class consists of a state expression that defines the state that the goal represents and a 
set of goal attributes that are used to parameterize the state expression. When a goal is instantiated, all its 
attributes must be given explicit values, which in turn concretely define the goal expression.  

Because many goals are general in nature and apply to many situations, we allow goals to be 
parameterized.  These parameters typically define attributes of the goal that are required when 
determining if a goal has been achieved.  For example, the goal “search area” requires that the “area” be 
defined.  Instead of defining a general goal g, we include parameters such as g(area).  During the 
operation of the organization, parameterized goals must be instantiated with concrete values for each 
parameter.  Thus we might instantiate this particular goal as g(room1), which would be interpreted as 
“search room1”.  Only instantiated goals may be assigned to agents to be achieved.   

Each goal in an organization can be classified as either an achievement goal or a maintenance goal.  
Achievement goals require the organization to take action to produce a state that meets the goal 
requirements whereas maintenance goals require the organization to ensure that a certain state is 
maintained as long as the maintenance goal’s siblings are active.  Thus, if the organization wants to 
ensure that a specific state exists at all times, then its root goal will have a maintenance subgoal.  If a goal 
has a maintenance sub-goal, then its achievement can only occur when all achievement sub-goals have 
been achieved and its maintenance sub-goals are maintained. To determine whether a goal, g, is an 
achievement goal or a maintenance goal, we define two predicates, achievement and maintenance. 
The achievement and maintenance attributes are exclusive; each goal must be defined as either an 
achievement goal or a maintenance goal.   

 ∀ g:GS | g.achievement ⊗ g.maintenance   (1) 

The predicates achieved, failed, preceded, and obviated refer to the state of a particular goal instance. The 
predicate values are defined upon goal instantiation. A goal is achieved when the goal state becomes true 
and failed when it is determined that the goal state cannot be achieved. A goal is preceded when all goals 
that precede it have been achieved and it can be pursued. Finally, a goal is obviated when achieving it no 
longer is useful in terms of reaching the overall goal g0. Thus, there are a few obvious constraints on these 
values (GI is the set of goal instances): 
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 ∀ g:GI | achieved(g) ⇒ preceded(g)  (2) 
 ∀ g:GI | ¬ preceded(g) ⇒ ¬ achieved(g)  (3) 
 ∀ g:GI | obviated(g) ⇒ ¬ achieved(g)  (4) 
 ∀ g:GI | achieved(g) ⇒ ¬ obviated(g)  (5) 

3.1.1 Goal Specification Tree 

3.1.1.1 Children 

The children relation defines the structure of the goal specification tree.  The root of the tree is go, which 
has no parents; every other goal class in the specification tree has exactly one parent and descends from 
go.   

 ∀ g:GS | g∉children+(g)  (6) 
 ∃ go:GS, ∀g:GS\{go} | g∈children+(go) ∧ parent(go)={} ∧ #parent(g)=1 (7) 
Each non-leaf goal class is refined conjunctively or disjunctively; leaf goals are neither. Thus, each goal 
class is statically defined as conjunctive or disjunctive while leaf goals are neither conjunctive nor 
disjunctive. This is defined formally as follows (⊗ is the exclusive-or operator). 

  ∀g:GS | children(g) ≠ {} ⇒ g.conjunctive ⊗ g.disjunctive  (8) 
  ∀g:GS | children(g) = {} ⇒ ¬g.conjunctive ∧ ¬g.disjunctive  (9) 

3.1.1.2 Precedes 

Conceptually, the precedes relation determines which goals must be achieved before a given goal may 
even be attempted.  As defined above, precedes(g) returns a set of goals that may be achieved after g has 
been achieved.  Precedence is not valid between ancestors or descendants in the goal tree.  Likewise, we 
cannot have a circular precedence relation. 

 ∀ g1,g2:GS | g2 ∈ precedes(g1) ⇒ g2 ∉ children+(g1) ∧ g1 ∉ children+(g2) (10) 
 ∀ g:GS | g∉precedes+(g)  (11) 

3.1.1.3 Triggers 

The triggers relation is similar to precedes in that it restricts specific goals from being pursued until a 
specific event occurs.  For instance, assume that goal A triggers goal B based on event E.  Instead of 
requiring the system to achieve goal A before pursuing goal B, the trigger relation requires the system to 
instantiate a new instance of goal B when event E occurs during the achievement of goal A.  This 
relationship is quite natural and useful.  For example, in a search and rescue system when an agent is 
searching an area, a rescue goal should be instantiated for each victim found.  Thus, the event “victim 
found”, which occurs during achievement of the “search area” goal, triggers the creation of a new 
instance of the “rescue victim” goal.  Since when an event triggers a parent goal, the entire subtree under 
the parent goal is triggered, children of the parent goal cannot be triggered independently of the parent 
unless triggered by a sibling of the same parent.  

∀ g1,g2,g3:GS, ∀ e1,e2:E | g2∈triggers(g1,e1) ∧ g3∈children+(g2) ⇒ triggeredBy(g3,e2) ⊆ children(g2) (12) 
As with precedence, it is also not allowable to have a loop of goal classes that trigger each other, nor is 
triggering allowed between ancestors or descendants. 

 ∀ g:GS | g∉triggers+(g)  (13) 
 ∀ g1,g2:GS | g2 ∈ triggers(g1) ⇒ g2 ∉ children+(g1) ∧ g1 ∉ children+(g2) (14) 
Generally, goals that are triggered by an event are parameterized based on information related to that 
event.  For example, the triggered goal “rescue victim”, is parameterized on the location of the victim to 
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be rescued.  When a victim is discovered, an instance of the “rescue victim” goal is created and the 
parameter is given an explicit value. Thus, it is required that the parameters of an event match one-to-one 
with the attributes of the goal that it triggers. 

 

3.1.1.4 Negative Triggers 

Negative triggers are the opposite of goal triggers. Instead of adding new goals to the goal instance tree, 
negative triggers remove existing goal instances from the goal instance tree.  Like triggers, they are 
activated on a specific event. They also have a set of parameters, whose values must exactly match those 
of an existing goal instance for the negative trigger to remove a goal. Within the goal specification tree 
there are few restrictions on the use of negative triggers as there can be loops and negative triggers can be 
used to remove ancestor as well as predecessor goals. 

 
Figure 4. Goal Specification Tree 

Figure 4 is an example of a goal specification tree with both triggers and negative triggers. In this 
example, during the pursuit of goal g11 the occurrence of event e1 will trigger the creation of a new 
instance of g13 parameterized with the value x from event e1. Likewise, during the pursuit of each instance 
of g13, each occurrence of the e2 (with parameters x and y) will cause a new instance of the subtree headed 
by goal g2 (including goals g2, g21, and g22) to be created. 

The negative trigger ¬e3 indicates that during the pursuit of g22, if event e3 occurs, then an instance of the 
g2 subtree (including subgoals g21, and g22) whose parameters match e3’s x and y values will be removed 
from the current set of goal instances. If there is no g2 goal with matching values of x and y, then no goals 
are removed. 

3.1.1.5 Annotated Goal Specification Tree 

Each goal in GS must be triggered for an instance to be placed in GI.  There are however not all goal 
classes in the goal specification tree have an explicit trigger.   Some goals, such as g0, are instantiated 
once when the system is initialized. Other goals are instantiated when their parent goals are triggered.  
Since g0 cannot have an explicit trigger, a distinguished trigger, the initial trigger, is automatically added 
to the goal specification tree.  Thus, Figure 5 is the original goal specification tree while in Figure 6, the 
initial trigger, e0(), has been added to g0. Each goal that does not have a trigger is implicitly triggered 
when its parent is triggered as is explained below.   
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Figure 5. Example Goal Specification Tree 

 
Figure 6. Annotated Goal Specification Tree 

3.1.2 Goal Instance Tree 

As described above, the goal specification tree allows the designer to specify a set of goal classes that can 
be used as a template for creating goal instances at runtime.   The system can dynamically create and 
destroy goals in the instance tree. The instance tree (GInstance) retains the static tree structure but still 
allows for dynamism of goal triggering.   

GInstance, is defined as a tuple:  〈GI, E, Params, children, precedes, triggers, ¬triggers〉 

• GI set(Goal)  
• E set(Event) 
• Params set(Parameters) 
• children  ⊆  GI × GI 
• precedes  ⊆  GI × GI 
• triggers  ⊆  GI × E × P(Params) × GI 
• ¬triggers  ⊆  GI × E × P(Params) × GI 
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A single goal, g, is defined as a tuple 〈state, attr〉 where 

• state  expression defining a desired state of the world parameterized by attr 
• attr  set(Parameter) 

There are also a set of predicates defined over a goal: 

• conjunctive : GI → Boolean  
• disjunctive : GI → Boolean  
• achievement : GI → Boolean 
• maintenance : GI → Boolean 
• achieved  : GI → Boolean 
• failed : GI → Boolean 
• preceded  : GI → Boolean 
• obviated  : GI → Boolean 

An event, e, simply has a 〈name〉 attribute where 

• name a string 

A parameter, p, is defined as a tuple 〈name, type, value〉 where 

• name  a string 
• type  a data type 
• value  a valid instance of the attribute data type 

Functions similar to those defined for GS are defined over the relations for goal instances in GI:  

Function Signature Function Definition 
parent : GI → P(GI) parent(g) = {g1:GI | (g1,g)∈children} 

children : GI → P(GI) children(g) = {g1:GI | (g,g1)∈children} 

precedes : GI → P(GI) precedes(g) = {g1:GI | (g,g1)∈precedes} 

triggers : GI × Event → P(GI) triggers(g,e) = {g1:GI | ∀ p:Params (g,e,p,g1)∈triggers} 

triggers : GI × Event × P(Params) → P(GI) triggers(g,e,p) = {g1:GI | (g,e,p,g1)∈triggers} 

¬triggers : GI × Event → P(GI) ¬triggers(g,e) = {g1:GI | ∀ p:Params (g,e,p,g1)∈¬triggers} 

¬triggers : GI × Event × P(Params) → P(GI) ¬triggers(g,e,p) = {g1:GI | (g,e,p,g1)∈¬triggers} 

triggeredBy : GI × Event × P(Params) → P(GI) triggeredBy(g,e,p) = {g1:GI | (g1,e,p,g)∈triggers} 

¬triggeredBy : GI × Event × P(Params) → P(GI) ¬triggeredBy(g,e,p) = {g1:GI | (g1,e,p,g)∈¬triggers} 

When a goal is triggered, either a single leaf goal or an entire subtree is created depending on whether the 
triggered goal is a leaf goal or not.  The children of a triggered goal are implicitly triggered by the 
creation of the parent goal.  The implicit triggering of a child goal creates a single new instance upon the 
triggering of a parent goal. In the example in Figure 6, g6 and g7 are also triggered when g5 is triggered, as 
they implicitly inherit the e2(p) trigger. 

Goal instances are created from the goal classes defined in the goal specification tree. Because it is 
illogical to try to achieve the same goal instance twice, each goal instance must be unique in terms of goal 
class and actual parameter values. For instance, if a goal class exists for rescuing victims at location (x,y), 
it does not make sense to have two concurrent goal instances for rescuing a victim at the exact same 
location. Thus, an attempt to trigger a duplicate goal instance will result in no change to the current goal 
instance tree. 
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Upon system startup, the initial trigger, e0(), is implicitly triggered causing the creation of all goals 
triggered by e0(). Because g1, g2, and g3 inherited the initial trigger, those goals, along with goal g0 are 
created in the initial goal instance tree as shown in Figure 7. 

 
Figure 7. Goal Instance Tree after the Initial Trigger 

Once the initial instance tree is created, there are actually two goals, g2 and g3, that are available to be 
achieved.  However, because g2 precedes g3, only g2 may actually be pursued.  Goal instances that can 
actually be pursued are part of the active goal set, GActive, which is discussed in detail in Section 3.2.  
Since g2 is the only goal in GActive and it cannot trigger any new goal instances, it must be either be 
achieved or failed.  Once goal g2 is achieved (denoted by a grey box in Figure 8), it is marked as achieved 
in the goal instance tree as shown in Figure 8, and goal g3 is moved into GActive. 

 
Figure 8. Goal Instance Tree after the achievement of g2 

During the pursuit of g3, if an event of type e1 occurs, then a new instance of goal g4 is added to the goal 
instance tree under g1. Assuming event e1(a) occurs, the goal instance tree in Figure 8 is transformed into 
the goal instance tree in Figure 9.  In this case, a new instance of g4 is added to the tree with the parameter 
value of a, which is the value from the event e1(a).  At this point, if another an event of type e1 occurs 
during the pursuit of g3, a second instance of g4 will be added to the goal instance tree under g1. Note, 
however, that this new instance of event e1 must have a value other than a.  A second e1(a) event will 
attempt to trigger a second instance of goal g4 with parameter a, which is illegal given our requirement 
that goal instances be unique based on goal type and parameter values. 
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Figure 9. Goal Instance Tree after event e1(a) 

Once goal g4 becomes active, there are two types of events that can trigger the creation of new goal 
instances: e1and e2. For event e2, notice from Figure 6 that it actually triggers the creation of three new 
goals: g5, g6 and g7. Thus, if event e2(b) occurs during the pursuit of goal g4, an entire subtree under g0 is 
created as shown in Figure 10. 

 
Figure 10. Goal Instance Tree after event e2(b) 

As any number of any specific event may occur during pursuit of a goal, it is likely that similar events 
will occur (albeit with different parameters).  Thus, if event e2(c) occurs during the pursuit of goal g4, an 
second unique subtree under g0 is created as shown in Figure 11. 

 
Figure 11. Goal Instance Tree after Event e2(c) 
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3.1.2.1 Goal Instance Achievement 

As discussed above, non-leaf goals are statically defined as either conjunctive or disjunctive and 
therefore, the condition for their achievement is also statically defined. However, because subgoals may 
not be triggered at all or be triggered multiple times, the actual achievement condition cannot be defined 
directly in terms of subgoals from the goal specification tree.  For instance, in the example in Figure 6, 
one cannot say that  

achieved(g1) = achieved(g2) ∧ achieved(g3) ∧ achieved(g4) 

since there may be zero or many instances of g4. Thus, the achievement conditions must be specified in 
more general terms.   

GMoDS defines the achievement of non-leaf goals as follows. 

     ∀ g:GI | children(g) ≠ {} ∧ conjunctive(g) ⇒ 
 [achieved(g) ⇔ completed(g) ∧ ∀ g1:children(g) | achieved(g1)]  (15) 
 ∀ g:GI | children(g) ≠ {} ∧ disjunctive(g) ⇒ [achieved(g) ⇔ ∃ g1:children(g) | achieved(g1)]  (16) 
The completed(g) predicate defines when no more children of a goal g can be instantiated. For instance, 
in the example in Figure 12, determining when g1 has been completed requires determining whether the 
e3(p) trigger can occur. Of course, event e3(p) may occur as long as there is an instance goal of g32 active 
or if a new goal of type g32 can be instantiated.  Since goal g31 can trigger instances of goal g32 on event 
e2(p), goals of type g32 may be instantiated as long as there is still an active instance of goal g31. 
Furthermore, since goal g2 may instantiate instances of g3 and thus g31 and g32, no instances of g2 may be 
active either. 

 ∀ g, g1:GI | completed(g) ⇔ [g1∈triggeredBy+(g) ⇒ achieved(g1) ∨ failed(g1) ∨ obviated(g1)] (17) 
Where the goal instance version of triggeredBy is defined as follows. 

   ∀ g:GI, e:E | triggeredBy(g) ≡  
  {g1:GI | g ∈ triggers(g1,e)} ∪ {g2:GI | ∃ g1:parent+(g)   g1∈triggers(g2,e)}  (18) 
Notice that in Figure 11, the achievement condition of goal g0 does not change as it already requires the 
achievement of all its children. As more goals are triggered, g0 simply gains more children. Thus for 
Figure 11 achievement of g0 requires the achievement of g1, g5(b), and g5(c).  

  

 
Figure 12. Example 2 Goal Specification Tree 

3.1.2.2 Goal Instance Precedence 

While the example above had some simple goal precedence in it, goal precedence is not always so 
straightforward.  Due to the ability to instantiate new goal instances that might be defined as preceding 
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another existing goal instance, care must be taken to ensure that all possible cases are considered. For 
instance, in Figure 13 goal g3 precedes g4 (the left hand side of Figure 13 is the goal specification tree and 
the right hand side of Figure 13 is a goal instance tree).  Given the goal instance tree in Figure 13, the 
questions is whether g4 can become active when g3 is achieved?  

 
Figure 13. Goal Precedence Specification Problem 

Initially one is tempted to state that g4 should become active once g3 is achieved. However, this is 
problematic since event e(b) might still occur during the pursuit of g2 thus generating another instance of 
g3 as shown in Figure 14. In this case, it is clear that g4 cannot become active until all instances of g3 are 
achieved and there is no longer a chance that a new g3 can be instantiated. 

 
Figure 14. Precedence with Two Preceding Goal Instances 

In order for a preceded(g) to become true, all of the instances (existing and future) of the goals that 
precede that goal must be achieved.  Intuitively, this means that in order for a goal instance g to be 
preceded all goals that could possibly trigger a goal instance that precedes g must be achieved. 

∀ g:GI | preceded(g) ⇔  
∀ g1:precedes(g), e:E, g2:triggeredBy+(g1,e) | achieved(g1) ∧ achieved(g2) (19) 

3.2 Goal Lifecycle 

While a goal tree is useful for stating what a multiagent system should do, the tree itself is not sufficient 
to determine what goals should be pursued by the system or when specific goals have been achieved.  To 
help keep track of the status of the various system goals, a group of goal sets is used as shown in Figure 
15.   

Leaf goal instances in GI are partitioned into five sets: GT, GActive, GObviated, GFailed, and GAchieved. GT is the 
set of all goals that have been triggered, but are not yet preceded. The second set of interest is the set 
goals that have been triggered by some event, GT.  The active goal set GActive denotes those goals that 
have been triggered and have all their precedence requirements satisfied (i.e., all goals that precede them 
have been achieved).  Intuitively, GActive represents all the goals that the system can work on (or pursue) 
at any given time.  Once in the GActive, a goal can be achieved, failed, or obviated.  Both goal achievement 
and goal failure are determined by the agent assigned to achieve the goal. Thus for GMoDS purposes, if 
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the agent assigned to achieve a goal instance states that it is achieved or failed, it is placed into the 
Achieved Goal Set, GAchieved or the Failed Goal Set, GFailed.  

 

Figure 15. Goal Lifecycle 

3.2.1 Triggered Goal Set 

The triggered goal set, GT, contains all goals that have been triggered (implicitly or explicitly) by some 
event during the system operation.  The triggers relation defined above controls when goals are inserted 
into GT. When a triggering event occurs, it causes the creation of a new leaf goal instance that is moved 
into GT.  For example, in a search and rescue system, when an agent is searching a particular area a 
“rescue victim” goal should be created and placed into GT for each victim found.  Thus, the event “victim 
found”, which occurs during achievement of the “search area” goal, triggers the creation of a new 
instance of the “rescue victim” goal.   

 ∀ g:GI | g∈ GT ⇔ preceded(g) ∧ ¬achieved(g) ∧ ¬obviated(g) ∧ ¬failed(g) (20) 
At system startup, the implied init event places instances of all non-triggered leaf goals into GT, thus 
effectively stating which goals may be available to be pursed immediately (assuming they are not 
preceded by some other goal). 

3.2.2 Active Goal Set 

The active goal set, GActive is the set of goal instances that are available to be pursued by an organization.  
Once a goal is inserted into GT, it is moved into GActive as soon as all of the goals that precede it are 
achieved. Formally, we define the transition from GT to GActive as 

 ∀ g:GI | g∈ GActive ⇔ ¬preceded(g) ∧ ¬achieved(g) ∧ ¬obviated(g) ∧ ¬failed(g) (21) 
Later, the notion of a sequence of valid active goals sets will be crucial in defining important properties of 
an organization. A sequence of active goal sets what goals are available to be pursued by the system over 
time. We denote a sequence of active goal sets GActive’ as 

GActive’ = [GActive1, GActive2, … GActiven] 

3.2.3 Obviated Goal Set 

Goals are placed in the obviated set when their achievement is no longer necessary in order to achieve the 
top level goal, g0. Unlike achieved or failed goals, goal instances may be obviated without input from an 
agent. Goal obviation refers to the case where the goal instance is no longer needed to achieve the overall 
system goal g0, which occurs when a parent goal has already been achieved due to conjunctive goals. 
Thus, goal instance obviation is defined as follows. 

 ∀ g:GI | obviated(g) ⇔ ∃ g1:parent+(g) | ¬achieved(g) ∧ ¬failed(g) ∧ achieved(g1) (22) 
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Thus, when a goal becomes obviated, it is moved into the obviated set. 

 ∀ g:GI | g∈ GObviated ⇔ ¬achieved(g) ∧ obviated(g) ∧ ¬failed(g) (23) 

3.2.4 Failed Goal Set 

A goal is moved into the failed goal set when the agent assigned to pursue it determines that it is failed 
and can never be achieved. As described in Section 2.16.1.1, goal failure is different from an individual 
agent failing to achieve the goal (agent-goal failure). In the case of agent-goal failure, the goal may still 
be achieved and the goal stays in GActive and reorganization occurs. To be categorized as a goal failure, 
the goal must have been in the active goal set and had not been achieved or obviated. 

 ∀ g:GI | g∈ GFailed ⇔ ¬preceded(g) ∧ ¬achieved(g) ∧ ¬obviated(g) ∧ failed(g) (24) 

3.2.5 Achieved Goal Set 

When an agent is assigned to a goal, it will attempt to achieve that goal until (1) the goal is achieved, (2) 
goal failure occurs, (3) agent-goal failure occurs, (4) the goal is reassigned to another agent, or (5) the 
goal becomes obviated.  When an agent achieves a goal, it is moved into GAchieved.  Non-leaf goals may 
also be moved into GAchieved based on the achievement of their children.  Thus, when a goal is achieved by 
an agent, its parent goal achievement condition is checked to see if it is also achieved.  This check is 
recursive and continues up the tree until the parent goal has not been achieved.  When go is moved into 
GAchieved, the system has achieved its goal. 

 ∀ g:GI | g∈ GAchieved ⇔ ¬preceded(g) ∧ achieved(g) ∧ ¬obviated(g) ∧ ¬failed(g) (25) 
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Chapter 4 Viability with OMACS and GMoDS 
The constraints in Chapter 2 define the validity of the organization structure and its instances.  However, 
we are also interested in whether or not an assignment of agents to roles satisfying all the organizational 
policies exists that can allow the team to reach its top-level team goals, which we refer to as 
organizational viability. Although an organization may be structurally valid, there is no guarantee that an 
instance of that organization exists that can achieve its goals.  In actuality, we can never guarantee that 
the team will ever reach its top-level goal due to the dynamic nature of the environment in which the 
organization operates.  To achieve the organizational goals, the team must have the right mix of agents to 
play the right roles to achieve those goals.  Essentially, a viable organization is a valid organization that 
has been populated with the right types and numbers of agents so that it might potentially achieve its 
goals.  

Viability – an organization, O, is viable if there exists a series of assignments of agents to 
roles to goals – which is consistent with its goal model, G, and its policies, P – that can 
achieve its top-level goal. 

As implied by the definition, we must know the structure and semantics of the organization’s goal model 
to define viability formally. Thus, in the remainder of this chapter, we discuss the viability of systems 
designed using OMACS and GMoDS. 

For an organization to be viable, according to the definition above, it must have the roles and agents to 
achieve its top-level goal, under ideal conditions (no agent failures, etc.).  Therefore, we define a viable 
organization as an organization that is able to show that the top-level organization goal is achievable by 
some set of assignments of goals, roles, and agents.  When a given goal (or sub-goal) is achievable by a 
set of assignments, we term that goal satisfiable.  Therefore, viability refers the satisfiability of an 
organization’s top-level, or overall goal go. 

Notice that viability does not require all goals be satisfiable since we allow the notion of disjunctive goals 
in which only a single subgoal must be satisfiable.  It merely requires that it is possible to find a suitable 
set of assignments so that the top-level goal of the organization may be achieved.   

However, viability does require that the set of assignments used to determine satisfiability is consistent, or 
legal with respect to the organizations policies, P.  Thus, to show viability, we must show that an 
organization’s top-level goal is satisfiable using only legal sets of assignments.   

While viability does not require goals to be achieved in a specific order, it does require that the order of 
goal achievement is consistent with the precedence rules in the goal hierarchy.  This requirement implies 
that we actually need to consider a sequence of assignment sets that are consistent with the current goals 
in the active goal set, which is determined by the triggers and precedes relations. 

To formalize the notion of viability, we need to introduce the notion of a sequence of assignments of 
agents to roles to goals, Φ’.  First, we note that we have already recursively defined the notion of a 
sequence of active goal sets, GActive’ = [GActive0, GActive1, … GActiven].  Thus, Φ’ will be defined based on 
the sequence of active goal sets. 

Φ’ = [Φ0, Φ1, … Φn] 
Where Φi is the set of assignments corresponding to the active goal set GActivei.   

Φi ⊆ {<a,r,g> | g ∈ GActivei ∧ r ∈ R ∧ a ∈ A ∧ potential(a,r,g) > 0} 
Finally, we can define viability as a predicate that determines satisfiability of a given organization, where 
the viable predicate is defined as  

 viable(O) = ∃ Φ’:Φ | satisfiable(go, Φ’) ∧ legal(Φ’, P) ∧ ordered(Φ’, G)  (10) 
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Each element of viability, the satisfiability of a goal, the legality of an assignment set with organizational 
policy, and the orderliness of the goal tree are discussed individually below. 

4.1.1 Satisfiable 

Essentially, if a goal is a leaf goal, then it is satisfiable if we can find a role that can achieve that goal and 
an agent that can play that role.  This assignment must be part of some assignment set in the assignment 
sequence.  If a goal is not a leaf goal, then its satisfiability is based on the satisfiability of its sub-goals.  If 
the goal is conjunctive, then all its leaf goals must be satisfiable; if the goal is disjunctive, then at least 
one of its leaf goals must be satisfiable.  Formally, we define satisfiable as  

satisfiable(g, Φ’) =  
                    children(g) = {} ⇒  (∃ Φi:Φ’ | <a,r,g> ∈ Φi ∧ achieves(r,g) ∧ capable(a,r) ≥ 1) ∧ 
                    children(g) != {} ∧ g.conjunctive ⇒ (∀ g’:children(g)   satisfiable(g’, Φ’)) ∧ 
                    children(g) != {} ∧ g.disjunctive ⇒  (∃ g’:children(g)   satisfiable(g’, Φ’)) 

4.1.2 Legal 

We define the legality of a sequence of legal assignments, Φ’ = [Φ1, Φ2, … Φn], in terms of the legality of 
the individual assignments as described in Section 2.7.1.  Essentially, a sequence of assignments if legal if 
each of assignment set in the sequence is legal. 

legal(Φ’,P) = legal(Φ1,P) ∧ legal(Φ2,P) … legal(Φn,P) 
 

4.1.3 Ordered 

The requirement for the correct ordering of goals in the active goal set sequence is handled by the ordered 
predicate.  This predicate must ensure that goal precedence is appropriate and that maintenance goals hold 
at the appropriate places. 

ordered(Φ’, G) = orderedPT(Φ’, G) ∧ orderedM(Φ’, G) 
To be correctly ordered in terms of the precedes relations, an instance of a goal may only appear in the 
active goal set sequence if there is an instance of all preceding goals in previous active goal sets.  To be 
correctly ordered in terms of the triggers relations, an instance of a goal may only appear in the active 
goal set sequence if there is at least one instance of a triggering goal that appears in the immediately 
preceding active goal set sequence.  In the case of a triggered goal, the triggering goal must appear in the 
goal set immediately preceding it. 

orderedPT(Φ’, G) = ∀ g,g’:G, e:E  (g∈GActivej ∧ g∈precedes(g’) ⇒ g’∈ GActivei ∧ i < j) 
  ∧ (g∈ GActivej ∧ g∈triggers(g’,e) ⇒ g’∈ GActivei ∧ j-i = 1) 

If a goal has a maintenance sub-goal, then its achievement can only occur when all achievement sub-goals 
have been achieved and its maintenance sub-goals are maintained. Thus, maintenance goals must be 
active whenever their sibling goals are active.   

orderedM(Φ’, G) = ∀ g,g1,g2:G   
     g1∈children(g) ∧ g2∈children(g) ∧ maintenance(g1) ∧ g2∈ GActivei ⇒ g1∈ GActivei 
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Chapter 5 Organization-Based Multiagent Systems 
Engineering 

5.1 Original MaSE 

MaSE was originally designed to develop general-purpose multiagent systems and has been used to 
design systems ranging from computer virus immune systems to cooperative robotics systems [14], [56]. 
Each phase is presented below. 

Analysis Phase. The goal of the MaSE analysis phase is to define a set of roles that can be used to 
achieve the system level goals. This process is captured in three steps: capturing goals, applying use 
cases, and refining roles. 

• Capturing Goals. The first step is to capture the system goals by extracting them from the 
requirements, which is done by Identifying Goals and Structuring Goals. The purpose of the 
Identifying Goals is to derive the overall system goal and its subgoals. This is done by extracting 
scenarios from the requirements and then identifying scenarios goals. After the goals have been 
identified, the second step, Structuring Goals, categorizes and structures the goals into a goal tree, 
which results in a Goal Hierarchy Diagram that represents goals and goal/subgoal relationships. 

• Applying Use Cases. In this step, goals are translated into use cases, which capture the previously 
identified scenarios with a detailed description and set of sequence diagrams. These use cases 
represent desired system behaviors and event sequences. 

• Refining Roles. Refining Roles organizes roles into a Role Model, which describes the roles in the 
system and the communications between them. Each role is decomposed into a set of tasks, which 
are designed to achieve the goals for which the role is responsible. These tasks are documented 
using finite state automata-base Concurrent Task Diagrams. Concurrent tasks consist of a set of 
states and transitions that represent internal agent reasoning and communications. 

Design Phase. The purpose of the design phase is to take roles and tasks and to convert them into a form 
more amenable to implementation, namely agents and conversations. The MaSE design phase consists of 
four steps: designing agent classes, developing conversation, assembling agents and deploying the agents. 

• Construction of Agent Classes. The first step in the design phase identifies agent classes and their 
conversations and then documents them in Agent Class Diagrams. The Agent Class Diagram that 
results from this step is similar to object-oriented class diagrams with two differences: (1) agent 
classes are defined by the roles instead of attributes and methods and (2) relations between agent 
classes are conversations. 

• Constructing Conversations. Once the agent classes and the conversations are identified, the 
detailed conversation design is undertaken. Conversations model communications between two 
agent classes using a pair of finite state automata similar in form and function to concurrent tasks. 
Each task usually generates multiple conversations, as they require communication with more than 
one agent class. 

• Assembling Agent Classes. Assembling Agent Classes involves defining the agents’ internal 
architecture. MaSE does not assume any particular agent architecture and allows a wide variety of 
existing and new architectures to be used. The architecture is defined using components similar to 
those defined in UML. 

• Deployment Design. The final design step is to choose the actual configuration of the system, which 
consists of the number and types of agents in the system and the platforms on which they should be 
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deployed. These decisions are documented in a Deployment Diagram, which is similar to a UML 
Deployment Diagram. 

5.1.1 MaSE Weaknesses 

While MaSE provides many advantages for building multiagent systems, it is not perfect. It is based on a 
strong top-down software engineering mindset, which makes it difficult to use in some application areas. 

1. MaSE fails to provide a mechanism for modeling multiagent system interactions with the 
environment. While we examined this topic in [13], it has never been fully integrated into MaSE. 

2. MaSE also tends to produce multiagent systems with a fixed organization. Agents developed in MaSE 
tend to play a limited number of roles and have a limited ability to change those roles, regardless of 
their individual capabilities. As discussed above, a multiagent team should be able to design its own 
organization at runtime. While MaSE already incorporates many of the required organizational 
concepts such as goals, roles and the relations between these entities, it cannot currently be used to 
define a true multiagent organization. 

3. MaSE also does not allow the integration of sub-teams into a multiagent system. MaSE multiagent 
systems are assumed to have only a single layer to which all agents belong. Adding the notion of sub-
teams would allow the decomposition of multiagent systems and provide for greater levels of 
abstraction. 

4. The MaSE notion of conversations can also be somewhat bothersome, as it tends to decompose the 
protocols defined in the analysis phase into small, often extremely simple pieces. When the original 
protocol involves more than two agents, it often results in conversations with only a single message. 
This makes comprehending how the individual conversations fit together more difficult. 

5.2 O-MaSE 

To avoid designing static multiagent systems, we have extended MaSE to allow designers to design a 
multiagent organization, which provides a structure within which the multiagent system may adapt. This 
extended version of MaSE is called Organization-based MaSE (O-MaSE). A preliminary proposal for the 
O-MaSE methodology is described below. In general, many of the diagrams used in O-MaSE are variants 
of the UML class diagrams and use keywords to denote the difference between goals, roles, capabilities, 
agent classes, etc. 

Throughout this section, an Information Flow Monitoring System (IFMS) is used as an example of an 
organization-based multiagent system. The overall goal of the IFMS is to keep track of the information 
producers and consumers along with the actual flow of information through a dynamically reconfigurable 
enterprise information system. The information producers and consumers use a publish/subscribe 
mechanism that allows consumers to find and subscribe to appropriate information producers. Therefore, 
the IFMS must keep track of the various information paths between the producers and consumers as well 
as monitor the actual data flowing along those paths. The IFMS provides data in the form of current paths 
and information flow statistics to enterprise system operators who monitor the system for problems. 

5.2.1 Requirements 

Requirements are translated into system level goals, which are documented in the form of an AND/OR 
goal tree. Figure 16 shows the goal tree for the IFMS described above. Given goal precedence relations, it 
is possible to design goal structures that cannot be achieved, thus we would like to provide the assurance 
that the top-level goal can be achieved. We have replaced the non-specific MaSE goal tree with a tree 
with specific AND/OR decompositions to match the organization metamodel. 

The syntax has also changed in the O-MaSE goal model. We use standard UML class notation with the 
keyword «Goal». Each goal may be parameterized, with parameters annotated as attributes of the goal 
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class. When goals are instantiated, they are given specific values for these attributes. The aggregation 
notation is used to denote AND refined goals whereas the generalization notation is used to denote OR 
refined goals. This notation is somewhat intuitive as AND refined goals require a composition of its 
subgoals to be achieved. Subgoals of an OR refined parent goal can be thought of as alternative ways to 
achieve the parent goal, or that they can be substituted in place of the parent goal. 

 
Figure 16. Goal Hierarchy Diagram 

5.2.2 Analysis 

Analysis begins by creating OMACS, which defines the organization’s interactions with external actors. 
Generally, there is one organization at the top level (denoted by the «Organization» keyword) and that 
organization becomes responsible for the top goal in the goal tree. Each organization can achieve goals 
and provide services, which are further refined via activity diagrams (similar to UML activity diagrams, 
not included in this report). The designer can also use sequence diagrams for describing use cases at the 
system level, similar to the original version of MaSE. Each organization may also include sub-
organizations to allow for abstraction during the design process. 

While we allow the use of services in O-MaSE to help define the activities that agents carry out while 
performing roles, they do not map directly to the organization metamodel as presented earlier. For the 
purposes of this report, we only mention them for completeness, but do not elaborate on them, as their use 
in defining organizations is not required. 

An example of an Organization Model is shown in Figure 17, where there are three actors making up the 
system’s environment: the ClientAPI, the ServerAPI, and the Admin. The arrows connecting the 
organization to the actors denote protocols that define the agent class’s interactions with the environment 
(these protocols are defined in detail in the high-level design stage). The relations between the 
organization and the goal and service classes (classes denoted by «Goal» and «Service» keywords) are 
fixed relation types. An organization provides services while achieving goals. These relations may be 
shown via explicit relations between organizations and goals; however, the relations may also be 
embedded in a class as shown in Figure 18 (where «achieves» relations are shown embedded within 
roles). 

Next, the organization model is refined into a role model (Figure 18) that defines the roles in the 
organization, the services they provide, and the capabilities required to play them. Each role is designed 
to achieve specific goals from the Goal Model and provide specific activities refined from top-level 
services in the Organization Model. Again, the arrows between actors and roles and between two roles 
indicate protocols that are fully defined later in the design stage. The Role Model may also include 
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capabilities (denoted by the «Capability» keyword), which are attached to the roles that require them by 
the «requires» keyword. 

Admin
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Server API

Client API

Client-
Protocol

<<provides>
>

<<Organization>>
InfoPath-IS

<<achieves>>

Server-Protocol

IS-information

<<Goal>>
1.  Get Information Path 

Data

<<Goal>>
2.  Get Object Flow 

Data

<<Service>>
MonitorInfoFlow

<<achieves>>

 
Figure 17. Organization Model 
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Request Source Monitor

Request Consumer Monitor

Create-Destroy

Create-Destroy

 
Figure 18. Role Model 

At this point, O-MaSE differs from MaSE in that O-MaSE does not require the analyst to create 
concurrent task diagrams to describe the behavior of each role. This task is more appropriately carried out 
at the low-level design stage. The use of activities, which are refined via activity diagrams, allow the 
analyst to specify high-level behavior without resorting to low-level details required by concurrent task 
diagrams. 
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Throughout the analysis phase, the analyst should also capture and document the ontology that will be 
used within the system as part of the Domain Model. We have explored the integration of domain models 
into MaSE in [12]. The Domain Model allows the analyst to model domain entities, their attributes, and 
their relationships. Figure 19 shows a simple example of a domain model using standard UML notation to 
show the relationships between two types of Clients: Source and Consumer. Sources produce InfoObjects 
while Consumers consume InfoObjects. 

 
Figure 19. Domain Model 

5.2.3 High-level design 

The first step in the high-level design is for the designer to use the Role Model and service activity 
diagrams to define the Agent Class Model as shown in Figure 20. In the Agent Class Model, agents 
classes and lower-level organizations are defined by the roles played (which determines the goals they 
can achieve), capabilities possessed (which determines the roles they can play), or services provided. 
Figure 18 shows the use of both explicit and embedded relations. The «plays» and «provides» keywords 
in the agent classes (denoted by the «Agent» keyword) define which roles instances of the agent class can 
play as well as the services it can provide. The «possesses» relation between agent classes and capabilities 
(denoted by the «Capability» keyword) indicates the capabilities possessed by instances of that class of 
agent. 
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Figure 20. Agent Class Model 

One the Agent Class Model is complete, Protocol Models (Figure 21) are used to define the message-
passing protocols between agent classes. These Protocol Models follow the currently proposed AUML 
protocol diagrams [59], which allow the ability to show alternative and repetitive message structures. 
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Figure 21. Protocol Model 

Figure 21 captures a subscription protocol where the initiator wants to subscribe to information published 
periodically by the participant. After the initial subscribe message, the participant may either refuse or 
agree. If the participant refuses, the protocol terminates, which is denoted by the X symbol. Assuming 
the participant agrees, the participant sends an inform message with the current subscription information. 
The protocol then enters a loop where, typically, the participant sends an inform message with new 
information. However, the participant may send a failure message or the initiator a cancelled message, 
both of which end the protocol. 

5.2.4 Low-level design 

In low-level design, we define agent behavior using an Agent Plan Model, which is based on finite state 
automata (Figure 22). The Agent Plan Model is similar to the original MaSE concurrent task diagrams, as 
it captures internal behavior and message passing between multiple agents. They feature an explicit send 
and receive actions to denote sending and receiving messages. The remainder of the syntax and semantics 
is defined in [14].  The difference is that each Agent Plan Model is designed to achieve a specific goal by 
playing a given role and, thus, an agent may have multiple plan models. When an agent is assigned to 
play a particular role to achieve a goal, it uses the appropriate plan. If an agent is assigned multiple 
role/goals to play/achieve, it is up to each agent to decide whether plans are executed sequentially or 
concurrently. 

5.3 Conclusions 

In this section, we have discussed the current version of MaSE and some of its shortcomings. With the 
extension of MaSE to O-MaSE, we have dealt with each of these problems. Specifically, we have 
provided a mechanism for defining the multiagent systems interactions with the environment by adding 
external actors and defining the interactions protocols between the system and the actors. 

Second, we have extended MaSE to capture the organizational concepts identified in our organization 
metamodel. New concepts include AND/OR refinement of goals, integration of capabilities and the 
ability to model sub-teams, or sub-organizations. This feature allows designers greater levels of 
abstractions and directly complements the notion of organizational agents in our organization metamodel. 
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Wait
Check

ok =check(client)

receive(request(start, client, type), clientObserver)

Create
agent = createAgent(ObjectObserver)

[OK] send(agree, clientObserver)

[not OK] send(refuse, clientObserver)

Save
list.addAgent(agent)

[valid(agent)] send(create(client, type), agent)

[not valid(agent)] 
  send(failure, clientObserver)

Init
list = new(List)

send(inform(success), clientObserver)

Lookup
agent = list.find(client, type)

receive(request(stop, client, type), clientObserver)

[not valid(agent)] send(failure, clientObserver)

[valid(agent)]
send(request(shutdown), agent);
send(inform(success), clientObserver)

Role: MonitorManager
Goal: ManageMonitors()

 
Figure 22. Agent Plan Model for AgentManager 

Finally, we took the notion of concurrent tasks out of the analysis phase and integrated concurrent tasks 
with conversations into Agent State Models in the low-level design phase. We are currently using O-
MaSE and our organization metamodel in several projects including an adaptive Battlefield Information 
System [56], cooperative robotic teams [60] and a system to monitor and control a large-scale information 
system.  

We are continuing to evolve O-MaSE to provide a flexible methodology that can be used to develop both 
traditional and organization-based systems.  A long-term goal is to provide a tailorable methodology that 
is fully supported by automated tools.  We are currently building a new version of agentTool (aT3) within 
the Eclipse IDE to support O-MaSE2.  Plans include code generation for various platforms as well as 
integration with the Bogor model-checking tool [64] to provide model validation and performance 
prediction metrics. 

                                                      
2  The current status of O-MaSE and the aT3 project can be found at the Multiagent and Cooperative Robotics 
Laboratory web site (http://macr.cis.ksu.edu/). 
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Chapter 6 Battlefield Information System Demonstration 
To demonstrate the effectiveness of OMACS and GMoDS, we implemented a simulation Battlefield 
Information System (BIS). The goal of the BIS is to provide an information system that can adjust its 
processing algorithms and/or information sources to provide required information at various levels of 
efficiency and effectiveness [1]. In this system, various types of sensors at different locations are used to 
detect enemy vehicles. These sensors are subject to failure and erroneous outputs and typically have a 
delay in getting the information categorized. When sensor data of interest are available, they are fused in 
order to answer queries from the commander. Queries are sent to the system using a user interface and 
they are of two types: transient and persistent. Transient queries are executed only once whereas 
persistent queries are carried out repeatedly until canceled. To be able to overcome the loss of sensors and 
continue to provide the required information, the Battlefield Information System needs to adapt by 
replacing the failed sensors and adapting the information processing adequately. We use OMACS and 
GMoDS, which provide the knowledge required for information agents to reorganize and adapt to the 
changes in the environment.      

6.1 Organization Design 

We define the goals, roles, capabilities and agents in order to create an organization meeting the 
requirements stated above.  

6.1.1 Goal Model 

The main goal of the application is to answer each query presented to the system. From the requirements, 
we derived a GMoDS goal specification tree as shown in Figure 23.  Non-leaf goals are decomposed 
using AND-refinement and OR-refinement. All the goals are conjunctive except goals 1.2.1.2.1 and 
1.2.1.2.2 that are disjunctive. Following are the leaf goals that the organization must attempt to satisfy. 

Goal 1.1 – Process Query: Get the query from the user.  

Goal 1.2.1.1.1 – Find Sensors<Q: Query>: Find all the sensors in the area of interest for the Query Q 
given in parameter. 

Goal 1.2.1.1.2 – Read Sensor<S: Sensor>: Read the data from the sensor S given in parameter. 

Goal 1.2.1.2.1 – Merge Diverse<Q: Query, L:<Sensors>>: Fuse the data received from the list of sensors 
L for the area specified by query Q. Sensors in L must be of different types. 

Goal 1.2.1.2.2 – Merge Similar<Q: Query, L:<Sensors>>: Fuse the data received from the list of similar 
sensors L for the area specified by query Q. Sensors in L must all be the same type. 

Goal 1.2.2.1 – Filter Information<Q: Query>: Filter the merged data based on the information required by 
the query Q.  

Goal 1.2.2.3 – Correlate Data<Q: Query>: Compare data with historical data in order to extract 
persistence information if the query Q is a persistent query. 

Goal 1.2.2.2 – Add Information<Q: Query>: Look up additional information if required by the query Q. 

Goal 1.2.3 – Return Result<Q: Query>: Display the result of the query Q in a user-friendly format. 

Goal 1.2.4.1– Monitor Time Constraints<Q: Query>: Check the validity of the data regarding the time 
constraint specified by query Q. 

Goal 1.2.4.2 – Monitor Accuracy Constraints<Q: Query>: Check the validity of the data regarding the 
accuracy constraint specified by query Q. 
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Figure 23. BIS Goal Model 
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6.1.2 Role Model 

The roles for the BIS have been derived from the goal tree. In order to have a valid organization, each leaf 
goal should have at least one role that can achieve it. Therefore, for each goal in this organization, we 
have created a role that can achieve it. A role achieving a parameterized goal will be able to achieve all 
different parameterized instances of this goal. Following are the roles we have defined for the BIS 
organization, along with the goals they can achieve. We also describe the behavior of each of those roles. 

R1 – Query Processor (G1.1): Periodically queries the GUI to get any new queries entered by the user. 
This role triggers an event to notify the system that a new query has been entered. This role achieves a 
goal that does not depend on any queries. It never terminates except for reorganization purposes. 

R2 – Sensors Locator (G1.2.1.1.1): Query the sensor database in order to find all sensors available in the 
area specified by the parameter of the goal it achieves.  Then it executes an algorithm to find the best 
coverage based on the set of available sensors. For each sensor selected, an event is triggered (event 
‘Found(S: Sensor)’). This event will result in the organization attempting to find an agent capable of 
reading the selected sensor. After all sensors have been selected, the role triggers an event to notify the 
organization that it has found all sensors capable of providing data for the query and terminates. The 
event – which will be mergeSimilar or mergeDiverse depending on the sensors selected – will result in 
the instantiation of a new data merger goal to merge the results coming from the sensors selected. 

R3 – Sensor Reader (G1.2.1.1.2): Read the data from the sensor given in parameter of the Read Sensor 
goal. This role interacts with the battlefield simulator in order to get the appropriate data. The data will be 
sent to any agents (typically a data merger agent) requesting those data.   

R4 – Data Merger Diverse (G1.2.1.2.1): Merge the data collected from various sensors covering the area 
of interest. This role uses a processing algorithm that allows it to merge data coming from sensors of 
different type. Once the data are fused, it can decide to trigger any of the sub goals of the Process Data 
goal. Depending on the information required by the query, the agent playing this role will collaborate with 
some other agents to process the data fused. This coordination will allow the agent to formulate adequate 
answers to the query. Once all the processing is done, it triggers an event with the result and terminates.  

R5 – Data Merger Similar (G1.2.2): Behave like the previous role. However, this role uses a processing 
algorithm that allows it to merge data coming from sensors of the same type efficiently. Thus, this role 
will not be able to process data from different sources. 

R6 – Object Filter (G1.2.2.1): Filter the data based on the type of information required by the query given 
as parameter for the Filter Information goal. When the filtering is done, the agent playing this role will 
return the processed query to the Data Merger agent in charge of that query and terminate. 

R7 – Intelligence Provider (G1.2.2.2):  Look up additional information about the enemies in the area 
selected by the query given in parameter of the goal it is achieving (Add Information goal). When the 
processing is done, the agent playing this role will return the processed query to the data merger agent in 
charge of that query and terminate. 

R8 – Persistence Validator (G1.2.2.3): Compare data with historical data in order to extract persistence 
information. This would be the case if, for example, we are monitoring the entrance of new vehicles in a 
given area. This role only applies to persistent queries. When the correlation is done, the agent playing 
this role will return the results to the Data Merger agent in charge of that query and terminate. 

R9 – Result Interface (G1.2.3): Return the results of the query to the GUI that will display them. 

R10 – Time Monitor (G1.2.4.1): Check the validity of the data regarding the time constraint if specified 
by the user. It communicates the results to the Data Merger agent in charge of the query and triggers a 
failure event if the constraint is violated. 

R11 – Accuracy Monitor (G1.5.2): Behave like the previous role but regarding the accuracy constraint.  
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6.1.3 Capabilities 

In order to have a valid organization, each role needs to require at least one capability. Some capabilities 
are used to interact with the environment while some others just allow the agent to carry out specific 
functional computations within the system. The capabilities identified for the BIS and the roles that 
require them are listed below. 

C1 – User Interaction (R1, R9): Used to interact with the GUI. This capability provides actions to get a 
query from the user and to display the result of a query that has been executed.  

C2 – Coverage Processing (R2):  Used to compute the optimal set of sensors that has the maximum 
coverage of the area of interest and that can satisfy the efficiency and accuracy constraints. This 
capability has two actions: satisfyConstraints and findOptimalCoverage. The action satisfyConstraints 
takes a set of sensors and return those that can satisfy some given constraints. The action 
findOptimalCoverage takes a set of overlapping sensors and return a minimal set of sensors which has the 
maximum coverage of a given area. 

C3 – Sensor Interaction <sensor> (R3): Used to interact with the actual sensors on the battlefield. This 
capability provides an action to query a sensor given in parameter and read its data. 

C4 – Data Merging Diverse (R4): Provides computational algorithms to merge data coming from diverse 
type of sensors. 

C5 – Data Merging Similar (R5):  Provides fast computational algorithms to merge data coming from 
similar sources only.  

C6 – Data Filtering (R6): Used to filter out some information that is not needed to answer the given 
query. 

C7 – Intelligence Processing (R7):  Used to search for additional information not provided by the sensors 
but needed to answer the given query. This capability will access a database and look up for the extra 
information needed. 

C8 – Correlation Processing (R8): Provide the ability to correlate data from two successive results of a 
given query. Correlation exhibits differences in the results of a query obtained at different times. 

C9 – DB access <name> (R2, R7, R8): Provide permission to access a database. The name of the database 
is given as a parameter. This capability also provides actions to read or write in the databases the BIS can 
interact with (e.g. sensors database, intelligence database).  

C10 – Monitoring (R10, R11): Provide the ability to check the time and/or the accuracy of a query. The 
information about accuracy and times of the results are provided by the data sources. 

C11 – Coordination (R3, R4, R5, R6, R7, R8, R10): Provide the ability to communicate with other agents. 
This capability provides actions to send/receive messages to/from specific agents in the organization. 
Agents can only communicate between them using this capability. 

6.1.4 Agents 

In order to have a viable organization, we define a specific types of agent capable of playing at least one 
role in the organization. To be able to play a specific role, an agent must possess the capabilities required 
for that particular role. The agent types with their capabilities are listed below. 

• QA – Query Agent (C1) 
• SFA – Sensor Finder Agent (C9, C2) 
• DSA – Data Sensor Agent (C3, C11)  
• MAD – Merger Agent Diverse (C1, C4, C5, C11) 
• MAS – Merger Agent Similar(C1, C5, C11) 
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• DFA – Data Filter Agent (C6, C11) 
• IA – Intelligence Agent (C9, C7, C11) 
• DCA – Data Correlation Agent (C8, C9, C11) 
• MON – Monitor Agent (C10, C11) 

During the actual instantiation of the organization, an agent of each type will be created. For the Data 
Sensor Agent type, each sensor on the battlefield will be associated with a unique agent of type DSA. We 
have designed our system with all capabilities equally important. For this reason, the role capability 
function for an agent playing that role is 1 if that agent possesses all the capabilities required by the role, 
or 0 if it doesn’t.  

6.1.5 Organization State Model 

Given the defined goals, roles, and capabilities, we can show in Figure 24 OMACS populated with an 
appropriate set of agents. The boxes at the top of the diagram represent the leaf goals, the circles represent 
the roles, the pentagons represent capabilities, and the ellipses are agents identified by their types. The 
arrows between the entities represent the achieves, requires, and possesses functions/relations. Each 
achieves and possesses arrow has a value of 1. 

 
Figure 24. BIS Organization Model 

6.1.6 Implementation Architecture 

The BIS system has been designed using a centralized approach (Figure 25). This approach allows 
reusability of various organization reasoning algorithms by decoupling the organization reasoning part of 
the application, which can be generic, from the actual BIS system composed of application-specific 
agents. The system has the following entities:   

• the Organization Master (OM),  

• the Agent Reasoning (AR)  

• the Agent Body (AB) 

The Organization Master (OM) is a specialized agent that is in charge of all organization-related tasks. 
Currently, this agent is not part of the organization and cannot be assigned any role to play. The OM 
agent is the only agent that possesses the organization knowledge and that is able to execute 
reorganizations algorithms. This agent finds goals to be in the Active Goal set, creates appropriate 
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assignments (<A, R, G>) and sends them to the agents via their Agent Reasoning component. The OM 
also gets the agents status and reorganizes appropriately if needed.  

 
Figure 25. Centralized Architecture 

Each agent is composed of two components: an Agent Reasoning (AR) component and an Agent Body 
(AB) component. In our centralized approach, the Agent Reasoning component of the agent serves as an 
interface between the OM and the Agent Body. It represents the part of the agent in charge of all 
organization related tasks. The AR receives assignments from OM and forwards them to the Agent Body. 
It also reports status/failures of its attached Agent Body to the OM.  

The Agent Body is the actual agent as defined in OMACS. It accepts assignments from the AR, plays its 
assigned roles and reports its status to its reasoning component. 

Communication between the OM and the agents is done by message passing via the AR. As the AR is 
actually part of the agent, the entities AR and AB can communicate directly via methods calls, thereby 
reducing the communication overheads produced by message passing. This architecture allows us to plug 
various organization reasoning algorithms into the systems while leaving the agents intact.  

A distributed organization reasoning would involve a partial or total distribution of the organization 
knowledge among all or some of the actors of this system. Therefore, a consensus would have to be 
reached about how the organization should adapt. In both approaches (centralized or distributed), we can 
easily attach various organization reasoning modules to the actual application.   

6.2 Reorganization Triggers 

To be able to adapt to a variety of unpredictable situations, our BIS organization is able to detect changes 
in the performance of the overall organization and modify its structure accordingly. Those changes are 
happening while the system is running. Most of them are environment changes, but some changes can 
happen internally to the organization (a goal completion for example).  Such changes will be 
reorganization triggers when they cause the organization to fail in achieving some goals or to be less 
effective or efficient. These trigger events will initiate the reorganization process. As a result, the 
reorganized instance will perform better than the original configuration. Currently, the organization may 
decide to reorganize for the followings reasons: 
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• Sensor Failure 

• Goal Completion 

• Maintenance Goal Failure  

We now describe how the system reacts to those reorganization triggers. 

6.2.1 Sensors Failure  

Each Data Sensor Agent (DSA) is linked to one physical sensor from the battlefield. The failure of a 
sensor (S1) is taken as a goal failure. The corresponding DSA, which is the only agent capable of playing 
R3 to achieve G1.2.1.1.2(S1), cannot satisfy its goal anymore. When a sensor involved in a query fails, 
the Data Merger agent in charge of that query becomes aware of this goal failure and notifies the OM of 
its lost of performance due to the failure of one agent. Then, the system redistributes the sensor reading 
tasks among all the sensor reader agents still working and capable of covering the area of interest. In 
some cases, this reorganization process will require the reassignment of the Data Merger agents to ensure 
optimal performance. When the reorganization is achieved, the query is executed again and the results are 
sent to the user.  In a rigid system, the loss of a sensor would mean an irreversible loss of performance in 
the system. 

6.2.2 Goal Completion 

The achievement of a goal can free up an agent and trigger the insertion of some new goals in the active 
goal set. In those cases, the organization needs to take proper decisions in order to optimize the 
performance of the system. The insertion of a new goal into the organization will require the team to take 
action to satisfy this new goal. If the organization is able to find a role that achieves this new goal, and an 
agent that can play this role, the selected agent will be assigned to the goal-role pair. In some cases, in 
order to find a valid assignment, the organization will have to reassign some agents already playing some 
roles. Similarly, an agent freed up after completion of its goal can be assigned to play new roles in the 
organization.  

6.2.3 Maintenance goal failure 

The user can specify time or accuracy constraints that the query needs to satisfy. To monitor the validity 
of those constraints, we have defined two maintenance goals: Monitor Time Constraint and Monitor 
Accuracy Constraint. The agents assigned to achieve those goals will monitor for conditions violating the 
constraints for a particular query. If a constraint violation is detected, the agent playing the monitoring 
role will notify the organization that will try to reorganize to meet the constraints. If the constraints cannot 
be satisfied, the user will be notified and the query will be executed without any constraints.  

6.3 Example Scenario 

To show an example of how the BIS operates, we define a scenario that will exemplify some of the 
adaptive behaviors explained above. We will describe the state of the organization each time a 
reorganization trigger is detected. We will exhibit the goals in the Active Goal Set (GActive) and the 
Achieved Goal Set (GAchieved), and all the assignments currently active in the system (Ф). We will assume 
that the system is only trying to answer one persistent query and omit the query parameter for goals and 
triggers. The BIS organization will answer the following persistent query: “Show the location and type of 
all enemy vehicles in the selected area”(the area selected is defined by a rectangle as shown in Figure 26). 
Once the query is entered, it is stored by an external agent (not part of the BIS organization) in charge of 
the GUI. The screenshot in Figure 26 represents the battlefield along with the sensors and enemy targets. 
We have defined four ground sensors (S1, S2, S3, S4), 1 ATR sensor (S5) and 5 enemy vehicles in our 
scenario. 
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6.3.1 Normal Execution 

At the initialization of the system, all the agents interested in participating in the organization will register 
with the Organization Master. All the goals that have no predecessors and do not require any explicit 
triggers are inserted in GActive. Once those goals are in GActive, roles and agents will be assigned to satisfy 
these goals. Given the goals, roles, capabilities and agents defined in section 3, G1.1 is the only goal that 
can be inserted in GActive. When G1.1 is inserted into GActive, the system will assign the Query Agent 
(QA) to play role R1 to achieve goal G1.1. Thus, we obtain the following state for the organization: 

 
Stage 0 

GActive = {G1.1} 
GAchieved = {} 
Ф = {(QA, R1, G1.1)} 

 
Once the QA retrieves the query from the GUI, it triggers the event start(Query). This trigger results in 
the insertion of G1.2.1.1.1 in GActive. Upon this insertion, the system must reorganize to satisfy this newly 
inserted goal. The Sensor Finder Agent (SFA) will be assigned to play role R2 to achieve goal G1.2.1.1.1. 
As we assumed that the system has only one query, the QA can terminate. Once the agent terminates, it 
sends an achieved message to the Organization Master. This message will result in the removal of the 
goal G1.1 from GActive and its insertion into GAchieved. The corresponding assignment is also removed 
from the list of current assignments. The corresponding organizational state transition is shown below. 

 
Stage 0  Stage 1  Stage 2 

GActive = {G1.1} 
GAchieved = {} 
Ф={(QA,R1,G1.1)} 

start GActive ={G1.1,G1.2.1.1.1} 
GAchieved = {} 
Ф={ (QA,R1,G1.1),     
        (SFA,R2,G1.2.1.1.1)} 

achieved GActive = {G1.2.1.1.1}    
GAchieved = {G1.1} 
Ф={(SFA,R2,G1.2.1.1.1)} 

 
In our scenario, the SFA chooses sensors S1, S2, S3 as optimal sensors for the current query. It then 
triggers the following events: found(S1), found(S2), found(S3), mergeSimilar(<S1, S2, S3>). Each found 
event will trigger a parameterized goal G1.2.1.1.2 having the parameter of the trigger. In our case, goal 
G1.2.1.1.2(S1), G1.2.1.1.2(S2), and G1.2.1.1.2(S3) will be triggered. As the sensors given in parameter 
for the event mergeSimilar are all similar sensors (ground sensors), this event will result in the insertion 
of the parameterized goal G1.2.1.2.2(<S1, S2, S3>). To satisfy the new goal G1.2.1.2.2, the system will 
choose role R5 which will be played by the Merger Agent Similar (MAS). When all the events have been 
triggered, the SFA sends an achieved message to the Organization Master. This message will result in the 
removal of the goal G1.2.1.1.1 from GActive and its insertion in GAchieved. The corresponding assignment is 
also removed from the list of current assignments. We have the following state transitions. 
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Figure 26. Battlefield Map 
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Stage 2  Stage 3  

GActive = {G1.2.1.1.1}    
GAchieved = {G1.1} 
Ф={ 
(SFA,R2,G1.2.1.1.1)} 
 

found(S1) 
 
found(S2) 
 
found(S3) 
 

GActive = {G1.2.1.1.1, 
           G1.2.1.1.2(S1), 
           G1.2.1.1.2(S2), 
           G1.2.1.1.2(S3)} 
GAchieved = {G1.1} 
Ф = {( SFA,R2,G1.2.1.1.1), 
          (DSA1,R3,G1.2.1.1.2(S1)), 
          (DSA2,R3,G1.2.1.1.2(S2)), 
          (DSA3,R3,G1.2.1.1.2(S3))} 

mergeSimilar 
(<S1,S2,S3>) 

 

Stage 5  Stage 4 

GActive ={G1.2.1.1.2(S1), G1.2.1.1.2(S2), 
         G1.2.1.1.2(S3), 
         G1.2.1.2.2(<S1, S2, S3>)} 
GAchieved = {G1.1, G1.2.1.1.1} 
Ф = {(DSA1,R3,G1.2.1.1.2(S1)), 
         (DSA2, R3, G1.2.1.1.2(S2)),  
         (DSA3, R3, G1.2.1.1.2(S3)), 
         (MAS,R4,G1.2.1.2.2(<S1,S2,S3>)) } 

              
achieved 

GActive = {G1.2.1.1.1,  G1.2.1.1.2(S1),   
           G1.2.1.1.2(S2),  
           G1.2.1.1.2(S3), 
           G1.2.1.2.2(<S1, S2, S3>)} 
GAchieved = {G1.1} 
Ф = {( SFA,R2,G1.2.1.1.1),  
          (DSA1,R3,G1.2.1.1.2(S1)), 
          (DSA2,R3,G1.2.1.1.2(S2)),  
          (DSA3,R3,G1.2.1.1.2(S3)),      
          (MAS,R4,G1.2.1.2.2(<S1,S2,S3>))} 

 
The fusing of data is done after coordination between the MAS and the DSAs in charge of that query. 
Note that no filtering, additional data or correlation is necessary for this query. In order to have the results 
of the query checked against the constraints, the MAS will trigger a monitorTime and monitorAccuracy 
event. Those events will result in the insertion of G1.2.4.1 and G1.2.4.2 in GActive. Role R10 and R11 will 
be selected to achieve respectively G1.2.4.1 and G1.2.4.2. These roles will both be achieved by the 
Monitor Agent (MON) which has all the required capabilities to play both roles. Thus we obtain the 
following transitions. 

Stage 5  Stage 6 

GActive = {G1.2.1.1.2(S1),         
          G1.2.1.1.2(S2), 
          G1.2.1.1.2(S3),   
          G1.2.1.2.2(<S1, S2,S3>)} 
GAchieved = {G1.1, G1.2.1.1.1} 
Ф ={DSA1,R3,G1.2.1.1.2(S1)), 
     (DSA2, R3, G1.2.1.1.2(S2)),    
     (DSA3, R3, G1.2.1.1.2(S3)),  
     (MAS,R5, G1.2.1.2.2(<S1,S2,S3>))} 

monitorTime  
 
monitorAccuracy 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S2),  
           G1.2.1.1.2(S3), 
           G1.2.1.2.2(<S1, S2, S3>),  
           G1.2.4.1,  
           G1.2.4.2 } 
GAchieved = {G1.1, G1.2.1.1.1} 
Ф = {(DSA1,R3,G1.2.1.1.2(S1)), 
          (DSA2, R3,G1.2.1.1.2(S2)),  
          (DSA3,R3,G1.2.1.1.2(S3)),  
          (MAS,R5,G1.2.1.2.2(<S1, S2,S3>)), 
          (MON, R10, G1.2.4.1),  
          (MON, R11, G1.2.4.2)} 

 
If none of the constraints is violated, the MON will send a message to the MAS notifying it that it can 
proceed and will send an achieved message to the Organization Master. This message will result in the 
removal of the goal G1.2.1.1.1 from GActive, its insertion in GAchieved and the removal of the assignment 
related to G1.2.1.1.1 from Ф.  The MAS will then trigger a result event, which will result in the insertion 
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of G1.2.3 in GActive. As the MAS has the capability to interact with the GUI, it will play role R9 to 
achieve goal G1.2.3 and send the result of the query to the GUI.  

 
Stage 6  Stage 7 

GActive ={G1.2.1.1.2(S1), G1.2.1.1.2(S2), 
          G1.2.1.1.2(S3),  
          G1.2.1.2.2(<S1, S2, S3>),  
          G1.2.4.1, G1.2.4.2} 
GAchieved = {G1.1, G1.2.1.1.1} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)), 
        (DSA2, R3, G1.2.1.1.2(S2)),  
        (DSA3, R3, G1.2.1.1.2(S3)),  
        (MAS,R5,G1.2.1.2.2(<S1,S2,S3>)) 
        (MON, R10, G1.2.4.1),  
        (MON, R11, G1.2.4.2)} 

 
result 
 
achieved 

GActive = {G1.2.1.1.2(S1), G1.2.1.1.2(S2),  
           G1.2.1.1.2(S3),  
           G1.2.1.2.2(<S1, S2, S3>),  
           G1.2.3} 
GAchieved = {G1.1, G1.2.1.1.1, G1.2.4.1, 
G.2.4.2} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)), 
          (DSA2, R3, G1.2.1.1.2(S2)),  
          (DSA3, R3, G1.2.1.1.2(S3)), 
          (MAS, R5,G1.2.1.2.2(<S1,S2,S3>))  
          (MAS,R9,G1.2.3)} 

 
Once the results of the query have been sent, the MAS will terminate its assignment to play role R9 to 
achieve G1.2.3 by sending an achieve message to the Organization Master. This message will result in the 
removal of the goal G1.2.3 from GActive and its insertion in GAchieved. The corresponding assignment is 
also removed from the list of current assignments. The MAS will not terminate its assignment for R4 as 
the query is persistent and will need to be executed again. 

 
Stage 7  Stage 8 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S2),  
           G1.2.1.1.2(S3),  
           G1.2.1.2.2(<S1, S2, S3>),  
           G1.2.3} 
GAchieved = {G1.1, G1.2.1.1.1, G1.2.4.1,  
               G1.2.4.2} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA2, R3, G1.2.1.1.2(S2)),    
          (DSA3, R3, G1.2.1.1.2(S3)),      
          (MAS, R5, G1.2.1.2.2(<S1,S2,S3>)),  
          (MAS,R9,G1.2.3)} 

 
achieved 
 
 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S2),  
           G1.2.1.1.2(S3), 
           G1.2.1.2.2(<S1, S2, S3>)} 
GAchieved = {G1.1, G1.2.1.1.1, G1.2.4.1,  
               G1.2.4.2, G1.2.3} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA2, R3, G1.2.1.1.2(S2)),  
          (DSA3, R3, G1.2.1.1.2(S3)),  
          (MAS, R5, G1.2.1.2.2(<S1,S2,S3>))} 
 

 
Figure 27 shows the results obtain from the GUI. The answer for the query covers 100% of the area of 
interest. The BIS detected the following three enemies. 

• Tank at 29,40 

• Truck at 20,40 

• Launcher at 36,47 

The system effectively detected all the targets in the selected area. 
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Figure 27. Results from the GUI for a Normal Execution 
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6.3.2 Sensor Failure 

The BIS simulator allows us to fail specific sensors. If we make S2 fail, the attached DSA2 will be unable 
to achieve goal G.2.1.1.2(S2). As DSA2 can no longer gather the data, the MSA, which was coordinating 
with DSA2, will have to interrupt its task and will generate a negative trigger failure. This negative 
trigger will cause all the subgoals of G1.2 to be removed from GActive, resulting in the cancellation of all 
their current assignments. Thus, goals G1.2.1.1.2(S1), G1.2.1.1.2(S2), G1.2.1.1.2(S3), G1.2.1.2.2(<S1, 
S2, S3>) will all be removed from GActive. The negative trigger failure will immediately be followed by a 
start event generated by the DSA.  The start event is parameterized with the initial query and causes the 
insertion of goal G1.2.1.1.1 in GActive. Achieving this goal will help to reselect appropriate coordinating 
agents for the query. The organization is treating the query that it failed to answer due to a loss of sensor 
like a new query. The BIS will then choose appropriate agents to overcome this loss in order to provide 
the best results. The state transitions after a sensor failure are shown below. For simplicity, we assume 
that GAchieved is empty when the failure occurs. 

Stage 8  Stage 8.1 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S2),  
           G1.2.1.1.2(S3), 
           G1.2.1.2.2(<S1, S2, S3>)} 
GAchieved = {} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA2, R3, G1.2.1.1.2(S2)),  
          (DSA3, R3, G1.2.1.1.2(S3)),  
          (MAS, R5,G1.2.1.2.2(<S1,S2,S3>))} 

- failure 
 
start 

GActive = {G1.2.1.1.1} 
GAchieved = {} 
Ф = {(SFA, R2, G1.2.1.1.1)} 
 

 
Taking into account the loss of capability of the DSA for S2, the SFA will indicate sensors S1, S3, S5 as 
the new optimal set of sensor for the query. It will then trigger the following events: found(S1), found(S3), 
found(S5), mergeDiverse(<S1, S3, S5>). Each found event will trigger a parameterized goal G1.2.1.1.2 
having the parameter of the trigger. In our case, goal G1.2.1.1.2(S1), G1.2.1.1.2(S3), and G1.2.1.1.2(S5) 
will be triggered.  

As the sensors given in parameter for the event mergeDiverse are different sensors (S1, S3 are ground 
sensors whereas S5 is an ATR sensor), this event will result in the insertion of the parameterized goal 
G1.2.1.2.1(<S1, S3, S5>).To satisfy the new goal G1.2.1.2.1, the system will choose role R4 which will 
be played by the Merger Agent Diverse(MAD). When all the events have been triggered, the SFA sends 
an achieved message to the Organization Master. This message will result in the removal of the goal 
G1.2.1.1.1 from GActive and its insertion in GAchieved. The corresponding assignment is also removed from 
the list of current assignments. The corresponding states of the organization are described below. 
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Stage 8.1  Stage 8.2 
 

 

 GActive = {G1.2.1.1.1} 
GAchieved = {} 
Ф = {(SFA,R2,G1.2.1.1.1)} 
 

found(S1) 
 
found(S3) 
 
found(S5) 
 

GActive = {G1.2.1.1.1,  
           G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S5),  
           G1.2.1.2.1(<S1, S3, S5>)} 
GAchieved = {} 
Ф = {(SFA,R2,G1.2.1.1.1), 
          (DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA5, R3, G1.2.1.1.2(S5))} 

mergeDiverse 
(<S1,S3,S5>) 

 

Stage 8.4  Stage 8.3 
 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S5),  
           G1.2.1.2.1(<S1, S3, S5>)} 
GAchieved = { G1.2.1.1.1} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA5, R3, G1.2.1.1.2(S5)),           
          (MAD,R4,G1.2.1.2.1(<S1,S3,S5>))} 
 

              
achieved 

GActive = {G1.2.1.1.1,  
           G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S5),  
           G1.2.1.2.1(<S1, S3, S5>)} 
GAchieved = {} 
Ф = {(SFA,R2,G1.2.1.1.1), 
          (DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA5, R3, G1.2.1.1.2(S5)),        
          (MAD,R4,G1.2.1.2.1(<S1,S3,S5>))} 

 
The execution then continues as described in the normal execution where stage 8.4 would be equivalent to 
Stage 5 as described in Section 6.3.1. The BIS detects the following enemies. 

• Tank at 29,40 
• Truck at 20,40 
• Launcher at 36,47 

Therefore, in this reorganization, DS2 has been replaced by DS5 and the BIS organization decided to use 
the MAD for the merging instead of the MAS in order to insure a better performance. Even though a loss 
of a sensor used to provide information for the query has occurred, the system was able to reorganize and 
maintain the flow of information without the intervention of the user. 

6.3.3 Maintenance Goal Failure 

Sensors in the battlefield simulator do not all provide the same accuracy for data and do not refresh their 
data at the same rate. In the BIS simulator, the ground sensors provide an accuracy between 65% and 75% 
and will provide data within 5 hours. ATR sensors are very accurate (80%-99%) but they are not very fast 
at providing data (10-15 hours). Therefore, the simulator can provide erroneous or outdated data that 
might not be of any interest for the commander. In this case, the commander can specify some constraint 
for the query. By default, the query does not have any constraints. In our scenario, we will require the 
system to provide data for the query within 8 hours. The system is currently running the query using 
DSA1, DSA3, DSA5 and MAD and the time and accuracy monitor roles R10 and R11 have been 
assigned to MON. This phase correspond to Stage 6 in Section 6.3.1 with some differences in the sensors 
used to answer the queries. We will denote this state by ‘stage 6b’. 

Once the data are sent to the Monitor Agent for checking the time constraint as described in the normal 
execution, the MON will generate a negative trigger failure because the query, as executed, do not meet 
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the 8 hours constraint. In fact, S5, which is an ATR sensor, can only provide data within 10 to 15 hours. 
Therefore, the maintenance goal G1.2.4.1 will fail. The negative trigger will cause all the subgoals of 
G1.2 to be removed from GActive, resulting in the cancellation of all their current assignments. Thus, goals 
G1.2.1.1.2(S1), G1.2.1.1.2(S3), G1.2.1.1.2(S5), G1.2.1.2.1(<S1, S3, S5>),  G1.2.4.1, and G1.2.4.2 will all 
be removed from GActive. The negative trigger failure will immediately be followed by a start event 
generated by the monitor agent (MON).  This event is parameterized with the initial query and causes the 
insertion of goal G1.2.1.1.1 in GActive. The system will then treat the query that failed as a new query and 
try to choose the appropriate organization in order to provide result to the query meeting the time 
constraint defined above. The state transition after the constraint violation is described below. For 
simplicity, we will assume that GAchieved is empty when the violation occurs. 

 
Stage 6b  Stage 6.1 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S5),  
           G1.2.1.2.1(<S1, S3, S5>) 
           G1.2.4.1, G1.2.4.2} 
GAchieved = {G1.2.1.1.1} 
Ф = {(DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA5, R3, G1.2.1.1.2(S5)),  
          (MAD, R4, G1.2.1.2.1(<S1,S3,S5>))            
          (MON, R10, G1.2.4.1),  
          (MON, R11, G1.2.4.2)} 

 
- failure 
 
start 

GActive = {G1.2.1.1.1} 
GAchieved = {} 
Ф = {(SFA, R2, G1.2.1.1.1)} 
 

 
Taking into account the time constraint for the query, the SFA will select sensors S1, S3, S4 as the new 
optimal set of sensor for the query because they are all ground sensors capable of covering the area of 
interest and providing data within 5 hours. It will then trigger the following events: found(S1), found(S3), 
found(S4), mergeSimilar(<S1, S3, S4>). Each found event will trigger a parameterized goal G1.2.1.1.2 
having the parameter of the trigger. In our case, goal G1.2.1.1.2(S1), G1.2.1.1.2(S3), and G1.2.1.1.2(S4) 
will be triggered. As the sensors given in parameter for the event mergeSimilar are all ground sensors, 
this event will result in the insertion of the parameterized goal G1.2.1.2.2(<S1, S3, S4>). To satisfy this 
new goal, the system will choose role R5 which will be played by the Merger Agent Similar(MAS). 
When all the events have been triggered, the SFA sends an achieved message to the Organization Master. 
This message will result in the removal of the goal G1.2.1.1.1 from GActive and its insertion in GAchieved. 
The corresponding assignment is also removed from the list of current assignments. The corresponding 
state of the organization is as follow. 
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Stage 6.1  Stage 6.2  

GActive = {G1.2.1.1.1} 
GAchieved = {} 
Ф = {(SFA,R2,G1.2.1.1.1)} 
 

found(S1) 
 
found(S3) 
 
found(S4) 
 

GActive = {G1.2.1.1.1,  
           G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S4),  
           G1.2.1.2.1(<S1, S3, S4>)} 
GAchieved = {} 
Ф = {(SFA,R2,G1.2.1.1.1), 
          (DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA4, R3, G1.2.1.1.2(S4))} 
 

mergeSimilar 
(<S1,S3,S4>) 

 

Stage 6.4  Stage 6.3 

GActive = {G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S4),  
           G1.2.1.2.1(<S1, S3, S4>)} 
GAchieved = {G1.2.1.1.1} 
Φ = {(DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA4, R3, G1.2.1.1.2(S4)),           
          (MAS,R5,G1.2.1.2.2(<S1,S3,S4>))} 
 

              
achieved 

GActive = {G1.2.1.1.1,  
           G1.2.1.1.2(S1),  
           G1.2.1.1.2(S3),  
           G1.2.1.1.2(S4),  
           G1.2.1.2.1(<S1, S3, S4>)} 
GAchieved = {} 
Ф = {(SFA,R2,G1.2.1.1.1), 
          (DSA1, R3, G1.2.1.1.2(S1)),  
          (DSA3, R3, G1.2.1.1.2(S3)),   
          (DSA4, R3, G1.2.1.1.2(S4)),        
          (MAS,R5,G1.2.1.2.2(<S1,S3,S4>))} 
 

 
The execution then continues as described in the normal execution where stage 6.4 would be 

equivalent to stage 5 (section 5.1). In this case, the BIS detects only the following enemies. 

• Truck at 20,40 

• Launcher at 36,47 

Therefore, in this reorganization, DS5 has been replaced by DS4 to insure the effectiveness of the query 
with regards to the time constraint. This reorganization has also replaced the MAD by the MAS which 
yields a better performance in merging data coming from the new set of sensors. In this scenario, we can 
see how the BIS system has been able to reorganize in order to satisfy a maintenance goal in the system. 
However, this reorganization has resulted in a lost of coverage and the Tank located at 29,40 cannot be 
detected anymore. The set of sensor chosen to satisfy the time constraint covers only 87% of the area. 

6.3.4 Execution Summary 

Figure 28 through Figure 30 summarize the information sources changes the BIS made to overcome the 
sensor failure and to satisfy the time constraint imposed by the commander. We can see that the BIS was 
able to switch its information sources from the set <S1, S2, S3> in Figure 28 to <S1, S3, S5> in Figure 29 
and finally to <S1, S3, S4> in Figure 30. The system was also able to change its fusing algorithms by 
assigning agents to play one of the two merging roles available in the organization (R4 and R5). 
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Figure 28. Normal Execution 

 
Figure 29. Execution with Sensor Failure 
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Figure 30. Execution with Maintenance Goal Failure 

6.4 Conclusion 

We designed a Battlefield information System capable of adapting to changes in the environment and 
modify its information processing algorithms consequently. The organizational framework on which the 
BIS is based, allows us to develop a scalable and flexible system, where agents can reorganize to 
overcome unpredictable situations and ensure the best performance of the system. 
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Chapter 7 - Conclusions and Future Work 
7.1 Conclusions 

There were four significant results from AFOSR grant F49620-02-01-0427.   

1. The creation of a model useful for developing distributed, adaptive systems based on organization 
theory, the Organization Model for Adaptive Computational Systems. 

2. The creation of a model – the Goal Model for Dynamic Systems – for specifying goals for 
dynamic systems that allows for ordering of goals and the creation of new goal instances based on 
events that occur during system operation. 

3. The initial investigation of a software engineering methodology for designing distributed, 
adaptive systems using a dynamic goal model.  

The result of this work has been documented in this report as well as 11 other publications. 

1. Scott A. DeLoach, et. al. A Capabilities Based Theory of Artificial Organizations. In 
development for submission to journal. 

2. Scott A. DeLoach. Multiagent Systems Engineering of Organization-based Multiagent Systems.  
4th International Workshop on Software Engineering for Large-Scale Multi-Agent Systems 
(SELMAS'05). May 15-16, 2005, St. Louis, MO.  

3. Eric Matson & Scott A. DeLoach. Formal Transition in Agent Organizations, IEEE International 
Conference on Knowledge Intensive Multiagent Systems (KIMAS '05), Waltham, MA, April 18-
21, 2005.  

4. Eric Matson & Scott A. DeLoach.  Autonomous Organization-Based Adaptive Information 
Systems, IEEE International Conference on Knowledge Intensive Multiagent Systems (KIMAS 
'05), Waltham, MA, April 18-21, 2005.  

5. David Gustafson, Venkata Prashant Rapaka, Scott DeLoach. A Comparison of Algorithms for 
Teams of Robots. Proceedings of the 2004 International Conference on Systems, Man and 
Cybernetics. October 10-13 2004 The Hague, The Netherlands.  

6. Scott A. DeLoach, Eric Matson.  An Organizational Model for Designing Adaptive Multiagent 
Systems.  The AAAI-04 Workshop on Agent Organizations: Theory and Practice (AOTP 2004).  
Technical Report WS-04-02.  AAAI Press. pp. 66-73.  July 25-29, 2004, San Jose, California.  

7. Eric Matson & Scott A. DeLoach. Integrating Robotic Sensor and Effector Capabilities with 
Multi-Agent Organizations. Proceedings of The 2004 International Conference on Artificial 
Intelligence (IC-AI'04). Las Vegas, Nevada, USA. June 21 - 24, 2004.  

8. Eric Matson & Scott A. DeLoach. Enabling Intra-Robotic Capabilities Adaptation Using an 
Organization-Based Multiagent System.  Proceedings of the 2004 IEEE International Conference 
on Robotics and Automation (ICRA 2004). April 26 – May 1, 2004. New Orleans, LA.  

9. Eric Matson & Scott A. DeLoach. An Organization-Based Adaptive Information System for 
Battlefield Situational Analysis.  Proceedings of the International Conference on Integration of 
Knowledge Intensive Multi-Agent Systems: KIMAS'03: Modeling, Exploration, and Engineering. 
30 Sep – 3 Oct 2003. Boston, MA  

10. Eric Matson and Scott DeLoach. Using Dynamic Capability Evaluation to Organize a Team of 
Cooperative, Autonomous Robots.  Proceedings of The 2003 International Conference on 
Artificial Intelligence (IC-AI'03) June 23-26, 2003, Las Vegas, Nevada, USA.  
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11. Eric Matson, Scott A. DeLoach. Organizational Model for Cooperative and Sustaining Robotic 
Ecologies. Proceedings of Robosphere 2002, a workshop on Self Sustaining Robotic Ecologies, 
pp. 5-9. NASA Ames Research Center November 14-15, 2002.  

7.2 Future Work 

While this research created two basic models and an initial methodology for developing dynamic, 
organization-based systems, it also instigated additional investigation into other areas of interest.   

1. Complete definition of the initial methodology proposed under this research. This research is 
being funded by AFOSR grant BG0229, Organization-based Model-driven Development of 
High-assurance Multiagent Systems.  In this research, the Organization-based Multiagent 
Systems Engineering (O-MaSE) methodology will be completely defined and integrated with 
advanced verification and validation techniques to (1) predict system performance and (2) ensure 
the system operates within preset bounds. The project will integrate the verification and 
validation capabilities via the agentTool III analysis and design tool being developed to support 
O-MaSE. 

2. Adapt the OMACS and GMoDS models to cooperative robotics area and sensor networks area.  
While there are many similarities between agent-based software systems and cooperative robotics 
and sensor networks, that fact that robots and sensors are hardware systems adds some 
complexity and rigidity that is not there in purely software systems. Specifically, the interaction 
with the environment is much more critical in hardware-based systems. The adaptation to 
cooperative robotics is being funded by the National Science Foundation under grant 0347545. 
The adaptation towards sensor networks is being funded by a Kansas State University Target 
Excellence grant and NSF Computing Research Infrastructure grant (to be awarded). 

3. As the OMACS and GMoDS models allow the development of complex software and hardware 
agent systems, the ability to control these systems becomes increasingly important. The 
organizational paradigm allows a unique approach towards human-based control of distributed 
agent/robot teams.  Current Air Force UAVs such as Predator and Global Hawk require multiple 
operators to carry out a single sortie due to the concurrent demands of image management, 
navigation, systems monitoring and decision making processes. This reality makes the task of 
controlling teams of robots seem daunting. Thus, employing organizational control should permit 
the human operator to focus on a single entity representing a team of agents/UAVs, rather than 
individual agents. The objective of this work would be to evaluate the ability of a human operator 
to interact with a team employing organizational control.  
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