
ROBOSIM-

ANALYZE AND RESTRUCTURE ENVIRONMENT

SIMULATOR

by

THOMAS KAVUKAT

B.Tech , Kerala University, India, 1999

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

DEPARTMENT OF COMPUTING AND INFORMATION SCIENCES

COLLEGE OF ENGINEERING

KANSAS STATE UNIVERSITY

Manhattan, Kansas

2005

 Approved by:

 Major Professor

 Scott Deloach, Ph.D.

 ii

ABSTRACT

The Cooperative Robotic Simulator or RoboSim simulates robots, communication

between robots, and the interaction between robots and the environment in which it is

present. The Robot Application, Hardware Simulator, Environment Simulator, Geometry

Package, and Viewer are the five different modules in the Cooperative Robotic

Simulator.

 RoboSim is a time step based system. At each time step, the system performs

following actions. Hardware simulator sends request messages to the Environment

module. Environment performs the actions based on requests and sends reply messages to

Hardware simulator. It also updates the Viewer with latest locations of robots in the

Environment. Each module therefore, synchronizes with Environment at each time step.

Thus, performance of Environment Simulator is very important for the performance of

the entire system.

This report primarily covers, analysis done on the performance of Environment

simulator, various design changes applied to the simulator, and the implementation of a

multithreaded architecture on the existing Environment Simulator. It also looks into the

integration of Geometry package to Environment module.

 i

TABLE OF CONTENTS

LIST OF FIGURES... ii

ACKNOWLEDGEMENTS ...iii

Chapter 1 Introduction ... 1

1.1 Simulation... 1
1.2 Overview of RoboSim ... 1
1.3 Literature Reviews .. 5
1.4 Objectives ... 6

Chapter 2 Environment Simulator – Analysis ... 7

2.1 Profiling .. 8
2.1.1 CPU Profiling.. 9
2.1.2 Memory Profiling.. 12

Chapter 3 Redesigning Environment Simulator 15

3.1 Two threads per client... 15
3.2 Single Thread per Client ... 16
3.3 Implementation of Single Thread Design ... 17

3.3.1 Requirements .. 17
3.3.1 Overview... 18

3.4 Analysis of new design ... 28

4 CONCLUSION... 30

4.1 Future Enhancements.. 30

REFERENCES .. 33

APPENDIX... 34

 ii

LIST OF FIGURES

Figure 1: System Overview ...2

Figure 2: RoboSim Components ...3

Figure 3: Environment Simulator CPU usage. ..9

Figure 4: Hardware Simulator CPU usage. .. 10

Figure 5: Robot/Environment Protocol. ... 12

Figure 6: Hardware Simulator – Memory hotspots...................................... 13

Figure 7: Two Thread design.. 15

Figure 8: Single Thread Design.. 17

Figure 9: Environment modules ... 19

Figure 10: Class Diagram. .. 21

Figure 11: ClientWorkerCoordinator - Sequence Diagram. 23

Figure 12: RobotClientWorker – Sequence Diagram. 25

Figure 13: Environment/Geometry Protocol. ... 26

Figure 14: GeometryClientWorker – Sequence Diagram. 27

Figure 15: ViewerClientWorker – Sequence Diagram. 28

 iii

ACKNOWLEDGEMENTS

I sincerely thank my Major Professor, Dr. Scott A Deloach, for taking me as a part of this

project and encouraging me to work on it. I also would like to thank my other committee

members, Dr. David A Gustafson and Dr.William J. Hankley for their time and effort as

well as for giving me valuable insight.

 All my friends were helpful and were ready to hear and give suggestions on

various problems I faced along the way. My sincere thanks to you people. Iam specially

thankful to my teammates, Balakumar Krishnamurthi, Vikram Raman and Ryan Shelton

for helping me at different levels of this project.

 Above all, without the grace of God and prayers of many, I could not have

attained anything in my life.

 1

Chapter 1 Introduction

1.1 Simulation

Computer simulation of complex systems or processes is often helpful in better

understanding of the system. Sometimes it becomes an essential part of the actual

implementation because the effort, time, and cost needed to perform complicated

hardware prototyping and testing are tremendous.

 The primary use of RoboSim is to test various robot applications on a group of

virtual heterogeneous robots, where robots communicate and cooperate among

themselves, before having to implement the applications on a set of real robots. RoboSim

is used to analyze how a group of heterogeneous robots works in various environmental

situations.

1.2 Overview of RoboSim

There are seven major modules in RoboSim. Each of these modules communicates with

any of the other modules through sockets so they could be executed on different

machines. Below is a brief description of the entire system.

Figure 1 gives an overall system design of RoboSim and Figure 2 shows the

major components of the RoboSim. Robot Control code issues commands to the robots

by calling different APIs1 exposed by the Hardware Simulator Interface. Remote Control

module connects to RobotControlCode. RobotControl code can issue commands based

1 These API declarations are same for both the actual and simulated robots so that control code,

after testing in RoboSim, could be directly executed on a real robot.

 2

on the inputs from Remote Control module. Remote Control is a user interface that

accepts inputs from external user through an I/O device. The Hardware Simulator

Interface API on invoking generates new requests, at the Hardware Simulator level,

which is then sent to Environment Simulator.

Figure 1: System Overview

The Environment module simulates the environment in which robots are

simulated. Details of environment are loaded from an XML file when the module starts

up. The number of robots present and the properties of each robot are described in the

file. The Hardware Simulator simulates the hardware of the robot by translating the

 3

robotic operations as requests to the Environment. Hardware Simulator and Environment

module interacts on a time step basis. The Environment Simulator, on starting, sets up the

time step size and sends this information to the Hardware Simulator. Later, when the

RobotControl Code issues commands, the Hardware Simulator breaks the operations

issued by the robot code into the time step size. For example, let the time

Figure 2: RoboSim Components

step size set by the Environment is 500ms. Now, if velocity of robot set by robot control

code is 500 m/s then hardware simulator knows that the robot can move a maximum of

250 mm every time step. Therefore, when a move command with 750mm is issued by the

 4

control code the hardware simulator will split the move command into three separate

move commands of 250mm each for three consecutive time step.

 In each time step, the Environment Simulator receives three major types of

requests from the Hardware simulator, ACTION which includes either move, turn or tag

requests, SENSOR which includes either sonar, laser or heat requests and

COMMEVENT for sending messages to another robot’s hardware simulator.

 On receiving the requests, the Environment bundles all the ACTION and sonar

SENSOR requests and sends it to geometry module. The geometry module is responsible

for the geometric representation of the environmental objects, collision detection, and

distance finding. By finding intersection between objects, it can prevent objects from

overlapping in the environment and simulate sonar and laser range finding. The

Environment Map module of the Environment Simulator processes SENSOR requests

other than sonar types. Environment receives the responses for each of the requests send

to the Geometry module. Responses for SENSOR requests are then send back to

corresponding robot’s Hardware Simulator.

The COMMEVENT request from each robot contains the destination robot to

where it wants to send the messages. Message Module of Environment does this

processing and sends the messages to appropriate Robot's Hardware Simulator.

 The Environment calculates the new positions of the Robots at the end of each

time step based on the response from Geometry module. These new positions are sent to

the Viewer module to be displayed to the end user. One coordinate unit in viewer is

equivalent to 1 meter in real world. One or more viewers can be connected to the

Environment.

 5

 The Control Panel module is a user interface to control the RoboSim system like,

to load a new environment file, to start, or to stop the simulation. It communicates with

the Environment Module.

1.3 Literature Reviews

There have been many development works in Robotic Simulation. Below I discuss about

two papers that describes about an environment for robotic simulation and the previous

work done on RoboSim.

[1] discuss about a development environment that helps in software development

for mobile robotics. The primary module in this system is a Robot Daemon that acts as a

gateway to either physical robot or a simulated one. A command line interface allows the

user to interact with the robot using a combination of semantic primitives. This allows

some simple functions to be implemented interactively. This development environment

allows control code written for a robot to be tested on a simulated robot before running

on an actual code. The user can switch between real robot and the simulated one.

 [2] discuss about a Mobile Robot Simulation, called Webots2 that helps in

developing a robot controller program in either C, C++ or Java. The controller programs

could be tested on the simulated robots and then transferred to real mobile robots using

Webots. The Webots includes complete library of sensors and actuators, which enables it

to simulate a real robot. You can create complex environments for your mobile robot

simulations using advanced hardware accelerated OpenGL technologies. The simulation

system used in Webots uses virtual time similar to the RoboSim.

2 It is a commercially available tool developed by Cyberbotics Ltd.

 6

 [6] details the initial implementation of the Environment Simulator in RoboSim.

The Environment class is the main class in this implementation. The Environment

Simulator drives the simulation. It has two phases: initial and execution. In the initial

phase, it reads from an XML file and waits for all the robot clients specified in the XML

file to connect to the Environment. In the execution phase it does the following infinitely,

first, time steps are sent to the robot clients, robots on receiving the time step sends the

requests for the current time step, these requests are processed by the Environment and

responses are sent back to the appropriate robot clients.

1.4 Objectives

RoboSim simulates a group of robots cooperating to achieve a goal. However, the

performance of RoboSim decreases dramatically as the number of robots in the system

increases. Another significant concern is the stability and scalability of the system. In this

report, we focus on analyzing and restructuring the existing Environment Simulator to

improve its performance and stabilize it. In addition, a new module, the Geometry

module, is to be added to the RoboSim system.

The report is structured as follows. In the first part, the existing architecture of

Environment module and the analysis performed on it using a profiler is discussed. The

second part discusses various designs that were considered for the Environment and the

final design that was chosen. At the end, the final implementation is discussed with

geometry package integrated into the system.

 The final chapter summarizes the work done and provides some suggestions for

future. Appendix contains an elaborate guide on how to start the simulator. It gives a

good idea about adding new functionalities to the existing Environment module.

 7

Chapter 2 Environment Simulator – Analysis

RoboSim is a time step based simulation, i.e. each robot advances to the next time

step if all others have finished computations of current time step. Since all robot

operations are simulated in the Environment Module, robots have to send their requests

for current time step to the Environment Module for a proper simulation. All the modules

proceed to the next time step only when the environment has finished computations of the

current time step. Overall performance of the RoboSim system therefore is depended on

the performance of the Environment Module. Again, Environment Module starts

computation for the next time step only after all the robot clients have sent their requests.

This makes it very important that robot clients too handle the responses for the current

time step from Environment fast and send the requests for the next time step.

Currently, the RoboSim slows down when the number of robots connected to

Environment Simulator increases. Therefore, it is important to analyze and make sure that

Environment Module has no processing or memory hotspots3. There are several methods

of finding the processing and memory hotspots in an application. A very basic method is

to calculate the time taken by a set of executing statements using print statements before

and after the statements. For this method, the programmer should analyze every part of

the code and do extensive testing. Another method is finding the probable sets of

statements that can cause memory/processing hotspots and then do an extensive analysis

on it. This way you can narrow down the search on the entire source code. Profiling tools

are helpful in finding the probable memory/processing hotspots. Many profiling tools are

3 Hotspots are the places in the code that affects the overall performance of the profiled

application.

 8

available that can find out memory/processing hot spots for you. In the next section, I

discuss the profiling done on the Environment Simulator to find these hotspots and

analysis done on these hot spots.

2.1 Profiling

To analyze the performance of any application profiling tools are very useful. It

helps us in identifying the bottlenecks of an application which otherwise is too difficult to

find. We used Borland Profiler to find the CPU usage and memory hotspots in the

Environment and the Hardware Simulator (robot client)4.

4 In this report, I use the terms Hardware Simulator and robot client interchangeably; Hardware

Simulator is the thread that communicates with Environment.

 9

2.1.1 CPU Profiling

Figure 3: Environment Simulator CPU usage.

Figure 3 is the output of profiler depicting the CPU usage hotspots of Environment

Simulator. A close look of Figure 3 shows that almost 67% of CPU usage of EM is in

writing to the ObjectOutputStream. Figure 4 is the profiler output for the Hardware

Simulator. Similar to the Environment Simulator analyzing the profiler output of

Hardware Simulator shows that the bottleneck in here too is writing into the socket.

Around 95% of the execution time of Hardware Simulator is spent on writing to the

ObjectOutputStream.

 10

Figure 4: Hardware Simulator CPU usage.

One of the possible solutions to improve the performance of Environment is to

assume that writing to Java output stream takes more time and so do them parallel in

different threads. The existing Environment was a sequential application; it receives

requests from each client, one after the other. This sequential execution might be slowing

down the Environment. The other solution is to look at the performance issues of using

Java ObjectOutputStream and fine-tune the same. In java, Object serialization is

the mechanism that allows you to read/write full-blown objects to byte streams.

Implementing the user objects as java Serializable interface allows you to serialize

 11

the objects by passing them to the writeObject() method of

ObjectOutputStream. ObjectOutputStream automates the process of writing

the class metadata and instance fields to the stream. In other words, it does all the

serialization work for you [2]. This causes the writeObject() function to be slow in

streaming the data across the network. Instead of using Serializable objects, we

could use Externalizable objects to be sent across the network. When you declare

that, an object is Externalizable you assume full responsibility for writing the

object's state to the stream. ObjectOutputStream no longer automates the process of

writing your class's metadata and instance fields to the stream.

Another important observation can be made from the protocol between

Environment and Robot shown in Figure 5. The Environment sends all the sensor

responses to robots at the end of each time step. When the Environment is ready to start

next time step, the robots will be processing these responses causing a delay in sending

requests for the next time step. This delay could be avoided by creating a new thread in

hardware simulator so that a different thread handles receiving responses.

 12

Figure 5: Robot/Environment Protocol.

2.1.2 Memory Profiling

Figure 6 is the profiler output that shows the memory hotspots of Hardware Simulator.

From Figure 6, it is clear that too many instances of Long objects are created in

Hardware Simulator. This resulted in the Robot Application crashing with

java.lang.OutOfMemoryError. In every time step the Hardware Simulator starts sending

requests to the Environment after receiving the time step information from Environment

and the Environment creates a new instance of java.lang.Long every time step. This

causes the ObjectOutputStream to cache the data at sending and receiving end of

the socket [1]; the garbage collector does not clean up this cache and application runs out

 13

of memory. Instead of sending a java.lang.Long object, streaming the time step

value directly to the socket using writeLong() function of ObjectOutputStream

is a better method.

Figure 6: Hardware Simulator – Memory hotspots.

According to [2], it is generally suggested that the ObjectOutputStream

connection be reset after data is written to it. Doing a reset() operation on

ObjectOutputStream allows the garbage collector to clean up the cached data of the

connection. Failure to perform this cleanup can cause the cache to grow and eventually

crash the receiving and sending applications. However, a reset() operation takes time

and can cause system to slow down. Therefore resetting the socket should not be done

after every writeObject() call, rather it should only be done in proper intervals.

 14

 The profiling discussed above enabled me to find the major bottlenecks in the

Environment Simulator. The Environment was implemented as a sequential application.

It processes all the robot socket connection in a single thread. Since writing to the socket

is the performance issue, we could handle this in separate threads to improve the

performance. In the next chapter, I discuss two multi-threaded architectures, and an

implementation of one of the architectures is discussed in detail.

 15

Chapter 3 Redesigning Environment Simulator

As discussed in Chapter 2, the major bottlenecks of the Environment Simulator are based

on writing to the socket connection. This time consuming process, writing to socket, can

be done in multiple threads to improve the performance. We consider two designs:

1 Two threads per client – In this design, the Environment starts two

threads for each robot client, one thread handles the input connection, and second thread

handles the output connection.

2 One thread per client – In this design, the Environment starts a single

thread to handle both input and output connections of each robot client.

 Below I discuss these two designs in detail.

3.1 Two threads per client

In this design, two threads, one to handle the input socket connection and the other to

handle the output connection, are started by the Environment Simulator for each robot

client. The overall scenario is depicted in Figure 7.

����������	
���	
�������
���	������
���	
��������
���	�������
���	
���	�

�	��	

�	��	

�	��	

�	��	

�����	�

�����	�

���������

���������

Figure 7: Two Thread design.

 16

In Figure 7 for Robot1 and Robot2, the Environment starts four threads

RobotSender1, RobotSender2, RobotReceiver1, and RobotReceiver2. The receiver

threads, RobotReceiver1 and RobotReceiver2 read the request from clients Robot1 and

Robot2 respectively. The Environment processes these requests and the sender threads,

RobotSender1 and RobotSender2, send corresponding responses. This design ensures that

responses are streamed as soon as they are generated.

One of the major advantages of this design is achieving asynchrony between the

Environment and the robot client. If Robot client has two separate sender and receiver

threads instead of current single thread model, the sender thread could send the requests

for time steps ahead of the current time step if they do not need to wait for any responses

from the Environment in the current time step.

3.2 Single Thread per Client

In this design, a single thread handles both input and output socket connection. This is a

much simpler design as the existing Hardware Simulator in the Robot client need not be

modified to take full advantage of this design. Moreover maintaining more threads is

always more complex as the communication between threads is an overhead in

multithreading. In Figure 8, which shows the design overview, two threads,

RobotThread1 and RobotThread2 are started for each client, Robot1 and Robot2

respectively. Same threads receive requests from robots and sends responses back to

them.

 17

����������	
���	������
�����������
���	
���	�

�����	�

���������

���������

���������	��

���������	��

�����	�

�	��	

�	��	

Figure 8: Single Thread Design.

In the next section, I discuss how Environment Simulator was modified to

implement the Single Thread per Client design.

3.3 Implementation of Single Thread Design

This implementation is the Single Thread per Client design we discussed in the previous

section. This will help in making the Environment multi threaded and is much simpler

than the Two Threads per Client design. Maintenance of threads is an overhead in multi

threading; therefore, reducing the number of threads makes it easier to port a sequential

application to a multi threading application.

3.3.1 Requirements

There are two main requirements for this implementation. First, to convert the current

sequential implementation of Environment to a multi threaded implementation. Second,

to add Geometry module to RoboSim and to establish a communication protocol between

the Environment and Geometry modules.

 18

3.3.1 Overview

The Environment Simulator was modified to include a new package called

EnvironmentClientInterface. The main function of the classes in this package is to handle

the communication with other clients as separate threads.

Figure 9 shows the component diagram of this new Environment. There are many

modules in the current Environment module which work together to simulate the

Environment. In this report, we discuss in detail only the EnvironmentClientInterface

module. This new module makes use of the other modules to produce a proper

Environment Simulation. The other major modules of the Environment Simulator are the

Environment Map component, the Collision Detection component, the Environment

Object component, the Robot components and the Sensor Components, which remains

the same as discussed in [6].

The EnvironmentMap component represents the environment. It implements

methods to manipulate and query the state of the Environment. EnvironmentMap

contains dynamic or static objects implemented by Environment Object module. Each

EnvironmentObject class contains information about its position in environment, its

orientation, and a geometry describing its shape. The CollisionDetection

component performs collision detection on geometry structure of the

EnvironmentObject. A special type of EnvironmentObject is an

EnvironmentObjectRobot. An EnvironmentObjectRobot may have one or

more sensors located at different places of the robot. These sensors are implemented in

RobotSensor component. For a detailed discussion of these modules, please refer to

[6].

 19

Figure 9: Environment modules

A new component called Geometry was added to the existing RoboSim system.

Since Environment has to communicate with this new module, the Environment module

had to be modified accordingly. The geometry module is responsible for the geometric

representation of the environmental objects, collision detection, and distance finding. By

finding intersection between objects, it can prevent objects from overlapping in the

environment and simulate sonar and laser range finding. In the previous version of

RoboSim, this module was part of the Environment. In the new system, Geometry runs

as a separate process.

Below I describe in detail the implementation of

EnvironmentClientInterface module. A detailed class diagram depicting all the

 20

classes of EnvironmentClientInterface module is given in Figure 10. There are

two important classes in this module. One is the ClientWorkerCoordinator and

the other is the ClientWorker class. Based on the different types of clients connecting

to the Environment, we added new specializations of the ClientWorker class to this

module. Currently the system has three different kinds of clients: Robots5, Viewers6, and

Geometry Client. Therefore, the EnvironmentClientInterface has three

different classes handling requests of these clients.

5 Robots classes are inherited from ArRobot or Scout class.

6 Viewers can be of type Viewer2D class or CRS3DViewer class.

 21

Figure 10: Class Diagram.

 22

Below these classes are briefly described with sequence diagrams depicting their

functionality.

1) ClientWorkerCoordinator

The ClientWorkerCoordinator manages all the client worker threads. Three

different types of clients connect to the environment robots, viewers, and geometry

modules. It starts three servers that listen for these clients to connect to the environment

at predefined ports, 8000 for the robots, 3000 for the viewers and 10000 for the geometry

modules. For each client that connects to the environment, the

ClientWorkerCoordinator starts a new thread that will receive and sends the

messages to client. The threads will start execution only after all the robot clients have

connected to the environment. In the current implementation, robots cannot dynamically

be added or removed from the environment. There are three kinds of robot requests that

environment handles, COMMEVENT, ACTION and SENSOR. COMMEVENT requests

contain messages one robot wants to send to another robot. Coordinator processes

COMMEVENT requests of robots.

The ClientWorkerCoordinator loops infinitely doing the following. It

starts a new ViewerClientWorker thread for any new viewer connected to the

environment. Then the coordinator waits for all RobotClientWorker objects to call

the function processMessage(). The last thread that calls this function triggers the

ClientWorkerCoordinator to start processing the COMMEVENT requests of all

the robot clients for the current time step. RobotClientWorker objects will then call

 23

getMessage() method of coordinator to get the messages that has to be sent to the

robot clients.

Figure 11: ClientWorkerCoordinator - Sequence Diagram.

2 RobotClientWorker

The RobotClientWorker handles the communication and the requests of each client.

Each of the RobotClientWorker object does the following infinitely. First, it sends

the current time step to the robot client, and then waits for client’s requests for the current

Environment :
Environment

CommCoordinator :
ClientWorkerCoordinator

viewerThread :
ViewerClientWorker

robotThread :
RobotClientWorker

geometryThread :
GeometryClientWorker

1: run()

2: startGeometryServer

3: startRobotServer

4: startViewerServer

5: start

6: start

Sequence of operation performed by ClientWorkerCoordinator.
It runs as long as the system is up and running

From here on coordinator iterates forever and in each
iteration it checks if any new viewer is connected, if then it
starts a new viewer thread

At first coordinator starts different servers and listens for clients to connect in
separate threads. Starts a new thread for any client that connects.

8: processMessage

9: getMessagetosend

7: start

 24

time step. The next two method calls trigger the GeometryClientWorker and

ClientCommCoordinator threads to resume execution as these will be blocked in

the beginning of every iteration by a wait() function call waiting for all the

RobotClientWorker thread to receive requests for the current time step. Then, the

GeometryClientWorker processes the SENSOR and ACTION requests and the

ClientCommCoordinator processes the COMMEVENT requests. The

Robotclientworker then calls the getMessages() function of coordinator object

to get the messages to be send to the robot client and sends it to robot client. Similarly the

responses for SENSOR requests are got by calling getResponses() function of

GeometryClient. It then goes back to the top of the loop.

The communication between Hardware Simulator and the

RobotClientWorker thread follows a specific protocol. There are two phases in the

communication between the Environment and the Hardware Simulator. In the first phase

when a new robot connects, it sends its name to the Environment. The Environment then

sends the time step size. The run() method of the ClientWorkerCoordinator

handles this initialization phase. The RobotClientWorker thread handles the second

phase. In each time step, the RobotClientWorker thread sends the time step

information to the Hardware Simulator. This causes the HardwareSimulator to send all

the requests to Environment for current time step. After processing these requests, the

RobotClientWorker thread sends the responses back to HardwareSimulator. A

detailed description of the protocol is discussed in [6].

 25

Figure 12: RobotClientWorker – Sequence Diagram.

3 GeometryClientWorker

The GeometryClientWorker thread interfaces with the Geometry module, which

implements the simulation of ACTION events and SONAR SENSOR events of robots.

The communication between GeometryClientWorker thread and Geometry Module

follows a simple protocol as shown in Figure 13.

coordinator :
ClientWorkerCoordinator

robotThread :
RobotClientWorker

geometryWorker :
GeometryClientWorker

robotsimulator :
HardwareSimulator

Sequence of operations performed by robot client
threads

1: run
2: sendTimeStep

3: getMessages
gets all the action,sensor and message
request for this timestep

4: processMessages
5: processRequest

asks the geometry to process sensor and
action requests.

6: getMessages

gets the messages to be
send to robotsimulator 7: sendMessage

sends all the messages to the client
for this time step

8: getSensorreply

9: sendSensorreplies

 26

environment :
Environment

Geometry :
GeometryClient

InitBundle

MoveBundle

MoveBundle

SonarRequestBundle

DistanceBundle

Protocol Sequence between
Environment and Geometry

Details of all static and dynamic
objects present in Environment at
startup are sent as one bundle.

The MOVE action requests in each
time step is send as one bundle.
The reply from Geometry will contain
the actual distance moved.

All SONAR SENSOR requests for each
time step are sent to geometry. Reply
will contain the distance between the
robot and the most nearest object in the
direction of the sonar.

Figure 13: Environment/Geometry Protocol.

The GeometryClientWorker thread is initially blocked by wait() function

so that all the RobotClientWorker threads could add their ACTION and SENSOR

requests for the current time step. It then sends the ACTION and SONAR requests to the

Geometry Module. Other SENSOR requests are simulated as a component within the

Environment module. After requests are sent, the thread receives the responses. If the

ACTION requests are successful then the Geometry Module sends back the distance

 27

moved by the robots. The positions of the robots in the Environment are then updated by

adding the returned value to the current position of the robots.

Figure 14: GeometryClientWorker – Sequence Diagram.

These updated locations are added to the queue of the all ViewerClientWorker

objects. ViewerClientWorker thread then sends these updated locations of robots in

Environment to their corresponding viewer client.

4 ViewerClientWorker

The ViewerClientWorker thread interfaces with different types of viewers;

2DViewer, 3DViewer, and robot specific viewer. The communication between

ViewerClientWorker thread and all these viewers follows the same protocol.

coordinator :
ClientWorkerCoordinator

geometryThread :
GeometryClientWorker

geometry :
GeometryClient

sensors :
RobotSensor

viewerThread :
ViewerClientWorker

Sequence of operations performed by
geometry client thread.

1: run
2: waitForRequests

3: sendActionRequests

4: sendSonarRequests

5: processSensors
process sensor requests other than
sonars.Currently geometry has only
sonar simulation.

6: getActionSonarReply

7: updateQueues

After getting action replies from geometry if action
success Environment objects are updated with latest
location information

 28

Similar to the Hardware Simulator/Environment protocol, this protocol also has two

phases. In the initial phase, information such as position, shape, and orientation of all

objects in Environment is sent to all types of viewer clients that connect to the

Environment. After this initialization phase, any updated information of the objects in

each time step is sent. The protocol is discussed in detail in [6]. The

ViewerClientWorker thread waits for updated locations by calling a wait() call.

When new information is added to the queue of ViewerClientWorker thread, it is

unblocked.

Figure 15: ViewerClientWorker – Sequence Diagram.

3.4 Analysis of new design

The new Environment was integrated with the existing setup of RoboSim and tested for

all required functionalities and for any improvement in performance.

coordinator :
ClientWorkerCoordinator

viewerThread :
ViewerClientWorker

viewer :
Viewer2D

geometryThread :
GeometryClientWorker

Sequence of operations performed
by viewer client threads

1: run

2: sendinitialobjects

Initial map of environment is send to viewer.
Its read by coordinator from xml file and
viewer thread gets it from coordinator.

3: addviewerWorker
geometry thread should know all the viewer
threads so it can send the updated locations.

4: addToQueue
the updated locations of the robots are
added to the queue to be send to client.

5: sendupdatelocations

the updated locations of the robots are
actually send to client.

 29

 An extensive testing of performance of the new Environment was not performed.

A basic testing scenario was conducted by calculating the time taken to complete 5000

time steps for both the old and new system, with ten robots that will do the following

infinitely, move forward for 10 units(10 meters in real world), then turn around and again

move back to old position. This test showed no significant increase in performance. This

could be due to communication between threads. Blocking and unblocking threads are

necessary for the Environment to synchronize with all the modules. For example,

collision detection can be performed on only one object at a time. This causes other

threads to be blocked and then unblocked. Functions like collision detection are called

synchronization regions. In the current Environment architecture, the number of

synchronization regions are more than the old Environment since there was only one

thread in the old Environment implementation. We need to look at how to reduce this. As

discussed in Section 3 fine-tuning of socket communication by converting

Serializable objects to Externalizable objects could improve the

performance. The new architecture has to be analyzed more thoroughly using profiler and

checked to see if any new bottlenecks have been introduced to the changes made.

 The new Environment was checked to see for memory leakage, which was

significantly reduced. The heap memory of the new Environment was growing in a

reduced manner when compared to the old Environment. Resetting socket connection

after write operation could completely stop the memory leakage. Resetting of socket was

not added to this implementation since it causes the application to slow down. We need to

look at the appropriate intervals at which reset operation can be performed.

 30

4 CONCLUSION

The analysis done on the Environment simulator helped in identifying the bottlenecks of

the system. The system was not able to run for long due to memory leaks. Profiling

helped in identifying the exact cause of the problem. Solving this issue made the

Environment more stable.

Some of the clients connected to the Environment can now communicate with the

Environment without synchronizing with other modules or processes that communicates

with the Environment. For example, in the original configuration, the viewer clients were

updated at the end of each time step. This caused robot clients to wait until the

Environment updated the viewer clients. Now the viewer clients can be updated in a

separate thread that does not block the threads serving robot client.

The Geometry Module was moved out of the environment and run as a separate

process. Earlier the geometry module was part of the Environment and hence all collision

detection functions were done within the Environment.

4.1 Future Enhancements

The Environment acts as a coordinator with many modules communicating with it.

Instead of Environment doing the actual simulation work, it is offloaded to other

processes like Geometry Module. Therefore, in the future, communication performance

will be the primary concern for the Environment.

 31

4.1 Communication Performance Improvement

Here I discuss three important modifications for the entire system that can help improve

the communication performance of the system by decreasing the response time of

Environment.

1. Convert all java Serializable objects to java Externalizable

objects. In Java, Object serialization is the mechanism that allows you to read/write full-

blown objects to byte streams. Implementing the user objects as Java Serializable

interface allows you to serialize the objects by passing them to the writeObject()

method of ObjectOutputStream. The ObjectOutputStream automates the

process of writing the class metadata and instance fields to the stream. In other words, it

does all the serialization work for you [2]. This causes the writeObject() function to

be slow in streaming the data across the network. Instead of using Serializable

objects, we could use Externalizable objects to be sent across the network. This

could improve the performance of the Environment. A more detail discussion can be

found in Section 2 of this document. This change can be done initially in Hardware

Simulator and Environment, and then analyzed to see if it actually improves the

performance.

2. Modify the Hardware Simulator and the Environment so that time step

information is not sent between them in every time step. For this, we need to modify the

protocol between Robot and Environment. Since the receive() function of the

ObjectInputStream is a blocking function, we do not need to send time step from

Environment to robot to synchronize all robots with Environment. Time step can be

incremented as a local variable by these two modules.

 32

3. We could also divide the Hardware Simulator into two separate threads so that

receiving and sending is done separately. Whether or not this will actually improve the

performance of the system is unknown.

4.2 Protocol Modification

Currently the Environment knows the details about robots by reading them from an XML

file. However, this could become complex when there are certain specific properties

attached to particular type of robot. For example, the Sonar sensors of Scout are at

different locations than Pioneer. Since Environment Simulator has to serve different types

of robots, this kind of information is not defined as constants within the Environment.

Adding this information to an XML file will make the file more complex and error prone.

Therefore, robots’ properties could be sent from the Hardware Simulator to the

Environment at the startup. To accomplish this, we must modify the protocol between the

Hardware Simulator and the Environment.

 The protocol between the Hardware Simulator and the Environment has two

phases: initial and execution. In the initial phase, the Environment sends time step size to

the Hardware Simulator after receiving the name of the robot from the Hardware

Simulator. Details of the robot could be sent from the Hardware Simulator to the

Environment in this initial phase.

 33

REFERENCES

[1] Dr. Heinz M. Kabutz, http://www.javaspecialists.co.za/archive/Issue088.html

[2] Stuart Halloway, a Java specialist at DevelopMentor,

http://java.sun.com/developer/TechTips/2000/tt0425.html

[3] Dr.Scott Deloach, KSU, http://www.cis.ksu.edu/~sdeloach/ai/projects/crsim.html

[4] Dudek, G., and Jenkin, M., A multi-level development environment for mobile

robotics, Proc. Int. Conf. on Intelligent Autonomous Systems: IAS-3, 542-550,

Pittsburgh, PA, 1993.

[5] Michael.O, Professional Mobile Robot Simulation, pp.39-42, international Journal

of Advanced Robotic Systems, 2004

[6] Scott Harmon’s MS report, Co-operative Robotics Simulator - Environment

Simulator, May 2004, http://robosim.user.cis.ksu.edu/tiki-index.php .

[7] RoboSim Team, KSU, http://robosim.user.cis.ksu.edu/tiki-index.php

 34

APPENDIX

User Manual

The RoboSim system contains one Environment process, one or more viewer processes

like Viewer2D, CRS3DViewer, one or more Robot processes, one or more Remote

Control processes, and one Geometry process. These processes can run on different

machines that are connected by a common network. Java 1.4 or above is required for all

the processes. To execute CRS3DViewer Java3D should be installed. RoboSim can be

executed on any operating system that supports java.

Below is a step-by-step explanation on how to start the RoboSim system:

1 Download the \bin directory, \scripts and \TestLoadFiles directories from

Central Versioning System, fingolfin.user.cis.ksu.edu.

2 Create a new Environment file in \TestLoadFiles\Environment folder

(e.g. test.xml). Suppose you want to setup two robots, say robot1 and robot2, in the

Environment, then you have to enter the details of these two robots in this file. A sample

XML file will be already present in \TestLoadFiles\Environment directory.

All the commands from step 3 to step 7 should be executed from the \bin directory.

3 Start Environment by issuing the following command

\bin> java edu.ksu.cis.cooprobot.simulator.environment.Environment
..\TestLoadFiles\environment\test.xml

From step 4 to step 6, hostname is the machine in which the Environment is running.

For example if the Environment is running in the same machine as the starting

application, then hostname will be localhost.

 35

4 Start a 2-D viewer (there is a 2 D viewer and a 3 D Viewer currently in the

system).

\bin> java edu.ksu.cis.cooprobot.simulator.viewer.Viewer2D <hostname> 3000

• 3000 is the port number at which the environment is going to wait for

viewer clients to connect.

5 Start geometry client.

\bin> java edu.ksu.cis.cooprobot.simulator.geometry.GeometryClient <hostname>

10000

• 10000 is the port number at which the environment is going to wait for

Geometry Client to connect.

6 By now all the modules necessary to support the RoboSim is ready. Robots

should only be started after these modules are started. The Environment will be waiting

for all the robots mentioned in the XML file to connect, only then will it start processing

requests from all the robots. There are two things to keep in mind while doing this. First,

make sure that all the robots mentioned in the files are started as separate processes.

Second, the names of the robots in the XML file should match to the names of the robots

that start. For example, consider test.xml; it contains robot1 and robot2. Now, the script

to start robots looks like the following:

\bin> java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControlRobot

robot1 <hostname> 8000

\bin> java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControlRobot

robot2 <hostname> 8000

 36

• 8000 is the port number at which the environment is going to wait for

robot clients to connect.

Here, RemoteControlRobot is the robot control code. This is the controller

program we test using the RoboSim.

7 A Remote Control program is available that can be used by external user to

control the robots. This remote control can be started as follows:

\bin> java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControl

..\TestLoadFiles\environment\RobotInfo.xml

 RobotInfo.xml contains the following information:

• Information of all the robots that are running in the RoboSim, i.e. the port

number and the hostname of the machine where each robot is running.

• RemoteControl initially controls only one robot. If the user wants, he/she can

switch to a different robot using the I/O device. These information is to be

mentioned in the above XML file.

Programmer Manual

The RoboSim project can be downloaded from the CVS repository at

fingolfin.user.cis.ksu.edu. You need access to the CVS directory to

download it. Eclipse can be used as the development tool and to connect to CVS. There

will be different packages present in the project. Current Environment uses two packages,

the main class Environment is within

edu.ksu.cis.cooprobot.simulator.environment and the client worker

classes are within

 37

edu.ksu.cis.cooprobot.simulator.environclientinterface. Below

I briefly describe how to add new classes to the existing Environment.

1 Adding Robots

The EnvironmentObject class contains methods that act on any Environment

Object, whether they are robots or otherwise. EnvironmentObjectRobot is an

extension of EnvironmentObject class. The information for sensors are stored along

with each robot. If a specific type of robots needs to be added to the Environment, create

a new class that extends EnvironmentObject class.

2 Adding Sensors

Each sensor has some common information such as position and rotation relative

to the robot. This information is stored in the RobotSensor class. RobotSensor

class can be extended to handle specialized sensors(e.g. RobotSensorSonar,

RobotSensorBump). RobotSensor is an abstract class with an incomplete method,

generateSensorResponse(). The Environment calls this method whenever the

robot requests a response from this particular sensor. This way the details of sensors are

hidden from the Environment.

 Therefore, to add a new Sensor you need to create a new class that extends from

RobotSensor class and implement the generateSensorResponse() method.

3 Handling new Types of Clients

If new type of client needs to communicate with the Environment, create a new class that

extends the ClientWorker class in the environclientinterface package. This

class objects can be instantiated and started from ClientCommCoordinator class.

 38

4 To disconnect Geometry Module

There is a variable GEOMETRY_USED in GeometryClientWorker class. Setting

this variable to zero makes the Environment work without using the Geometry module.

